Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components

Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2009-03, Vol.18 (2), p.111-128
Hauptverfasser: Grujicic, M., Sellappan, V., He, T., Seyr, Norbert, Obieglo, Andreas, Erdmann, Marc, Holzleitner, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 2
container_start_page 111
container_title Journal of materials engineering and performance
container_volume 18
creator Grujicic, M.
Sellappan, V.
He, T.
Seyr, Norbert
Obieglo, Andreas
Erdmann, Marc
Holzleitner, Jochen
description Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.
doi_str_mv 10.1007/s11665-008-9279-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914658896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33016917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-b42c90c59645b2256a3b71755b010f5770961c51bd3e7962d74fe63db4970fbd3</originalsourceid><addsrcrecordid>eNp9kU1LAzEURQdRsFZ_gLvgQlfRJJOPyVKLWqGioOIyzMcbTZmZ1CQV5t-bUkEQ9G3yCOceeNwsO6bknBKiLgKlUgpMSIE1UxrznWxCBeeYEsZ3006ExpprsZ8dhLAkKcMYn2Rvzy6WHVrYFtBsrDvAV2WABt2XEbwtu4CeoIM6Wjeg1nn06LqxB4_uYRObj5W3DbpyzYjtgF_fbQR0uY6ud9F-JqPrV26AIYbDbK9NNjj6fqfZy83182yOFw-3d7PLBa5zVURccVZrUgstuagYE7LMK0WVEBWhpBVKES1pLWjV5KC0ZI3iLci8qbhWpE2_0-xs611597GGEE1vQw1dVw7g1sFoyqUoCi0TefovmeeESk1VAk9-gUu39kO6whRKSJ5mY6NbqPYuBA-tWXnbl340lJhNQ2bbkEkNmU1DhqcM22ZCYoc38D_iv0NfvH2SWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875644446</pqid></control><display><type>article</type><title>Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grujicic, M. ; Sellappan, V. ; He, T. ; Seyr, Norbert ; Obieglo, Andreas ; Erdmann, Marc ; Holzleitner, Jochen</creator><creatorcontrib>Grujicic, M. ; Sellappan, V. ; He, T. ; Seyr, Norbert ; Obieglo, Andreas ; Erdmann, Marc ; Holzleitner, Jochen</creatorcontrib><description>Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/s11665-008-9279-4</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Automobiles ; Automotive components ; Automotive engineering ; Bolting ; Bolts ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Engineering Design ; Injection molding ; Materials Science ; Materials selection ; Quality Control ; Reliability ; Safety and Risk ; Thermoplastic resins ; Tribology</subject><ispartof>Journal of materials engineering and performance, 2009-03, Vol.18 (2), p.111-128</ispartof><rights>ASM International 2008</rights><rights>ASM International 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-b42c90c59645b2256a3b71755b010f5770961c51bd3e7962d74fe63db4970fbd3</citedby><cites>FETCH-LOGICAL-c378t-b42c90c59645b2256a3b71755b010f5770961c51bd3e7962d74fe63db4970fbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11665-008-9279-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11665-008-9279-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Grujicic, M.</creatorcontrib><creatorcontrib>Sellappan, V.</creatorcontrib><creatorcontrib>He, T.</creatorcontrib><creatorcontrib>Seyr, Norbert</creatorcontrib><creatorcontrib>Obieglo, Andreas</creatorcontrib><creatorcontrib>Erdmann, Marc</creatorcontrib><creatorcontrib>Holzleitner, Jochen</creatorcontrib><title>Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components</title><title>Journal of materials engineering and performance</title><addtitle>J. of Materi Eng and Perform</addtitle><description>Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.</description><subject>Automobiles</subject><subject>Automotive components</subject><subject>Automotive engineering</subject><subject>Bolting</subject><subject>Bolts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Engineering Design</subject><subject>Injection molding</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Thermoplastic resins</subject><subject>Tribology</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LAzEURQdRsFZ_gLvgQlfRJJOPyVKLWqGioOIyzMcbTZmZ1CQV5t-bUkEQ9G3yCOceeNwsO6bknBKiLgKlUgpMSIE1UxrznWxCBeeYEsZ3006ExpprsZ8dhLAkKcMYn2Rvzy6WHVrYFtBsrDvAV2WABt2XEbwtu4CeoIM6Wjeg1nn06LqxB4_uYRObj5W3DbpyzYjtgF_fbQR0uY6ud9F-JqPrV26AIYbDbK9NNjj6fqfZy83182yOFw-3d7PLBa5zVURccVZrUgstuagYE7LMK0WVEBWhpBVKES1pLWjV5KC0ZI3iLci8qbhWpE2_0-xs611597GGEE1vQw1dVw7g1sFoyqUoCi0TefovmeeESk1VAk9-gUu39kO6whRKSJ5mY6NbqPYuBA-tWXnbl340lJhNQ2bbkEkNmU1DhqcM22ZCYoc38D_iv0NfvH2SWQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Grujicic, M.</creator><creator>Sellappan, V.</creator><creator>He, T.</creator><creator>Seyr, Norbert</creator><creator>Obieglo, Andreas</creator><creator>Erdmann, Marc</creator><creator>Holzleitner, Jochen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090301</creationdate><title>Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components</title><author>Grujicic, M. ; Sellappan, V. ; He, T. ; Seyr, Norbert ; Obieglo, Andreas ; Erdmann, Marc ; Holzleitner, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-b42c90c59645b2256a3b71755b010f5770961c51bd3e7962d74fe63db4970fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automobiles</topic><topic>Automotive components</topic><topic>Automotive engineering</topic><topic>Bolting</topic><topic>Bolts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Engineering Design</topic><topic>Injection molding</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Thermoplastic resins</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grujicic, M.</creatorcontrib><creatorcontrib>Sellappan, V.</creatorcontrib><creatorcontrib>He, T.</creatorcontrib><creatorcontrib>Seyr, Norbert</creatorcontrib><creatorcontrib>Obieglo, Andreas</creatorcontrib><creatorcontrib>Erdmann, Marc</creatorcontrib><creatorcontrib>Holzleitner, Jochen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujicic, M.</au><au>Sellappan, V.</au><au>He, T.</au><au>Seyr, Norbert</au><au>Obieglo, Andreas</au><au>Erdmann, Marc</au><au>Holzleitner, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components</atitle><jtitle>Journal of materials engineering and performance</jtitle><stitle>J. of Materi Eng and Perform</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>18</volume><issue>2</issue><spage>111</spage><epage>128</epage><pages>111-128</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11665-008-9279-4</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 2009-03, Vol.18 (2), p.111-128
issn 1059-9495
1544-1024
language eng
recordid cdi_proquest_miscellaneous_914658896
source SpringerLink Journals - AutoHoldings
subjects Automobiles
Automotive components
Automotive engineering
Bolting
Bolts
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Engineering Design
Injection molding
Materials Science
Materials selection
Quality Control
Reliability
Safety and Risk
Thermoplastic resins
Tribology
title Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Life%20Cycle-Based%20Materials%20Selection%20for%20Polymer%20Metal%20Hybrid%20Body-in-White%20Automotive%20Components&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=Grujicic,%20M.&rft.date=2009-03-01&rft.volume=18&rft.issue=2&rft.spage=111&rft.epage=128&rft.pages=111-128&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1007/s11665-008-9279-4&rft_dat=%3Cproquest_cross%3E33016917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875644446&rft_id=info:pmid/&rfr_iscdi=true