Analyzing results of impedance spectroscopy using novel evolutionary programming techniques

This paper discusses the application of evolutionary programming methods to the problem of analyzing impedance spectroscopy results. The basic approach is a “direct-problem” one, i.e., to find a time constant distribution function that would create similar impedance results as the measured ones, wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroceramics 2010-06, Vol.24 (4), p.245-260
Hauptverfasser: Tesler, A. B., Lewin, D. R., Baltianski, S., Tsur, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 4
container_start_page 245
container_title Journal of electroceramics
container_volume 24
creator Tesler, A. B.
Lewin, D. R.
Baltianski, S.
Tsur, Y.
description This paper discusses the application of evolutionary programming methods to the problem of analyzing impedance spectroscopy results. The basic approach is a “direct-problem” one, i.e., to find a time constant distribution function that would create similar impedance results as the measured ones, within experimental error. Two complementary methods have been applied and are discussed here: Genetic Algorithm (GA) and Genetic Programming (GP). A GA can be applied when a known (or desired) model exists, whereas GP can be used to create new models where the only a-priori knowledge is their smoothness and their non-negativity. GP is tuned to prefer relatively non-complex models through penalization of unnecessary complexity.
doi_str_mv 10.1007/s10832-009-9565-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914658798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>914658798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-dad26821b37a3dbbfbcf42c518a9a46000844cbe63e4d2ceeece0270cd5265913</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG_Fi6dovtomx2XxCxa86MlDSNPp2qVNatIu7P56UyoIgqcJzPNOZp4kuSb4jmBc3AeCBaMIY4lklmfoeJIsSFYwJPKcncY3ExlinMvz5CKEHY6g4GSRfKysbg_Hxm5TD2Fsh5C6Om26HiptDaShBzN4F4zrD-kYJs66PbQp7F07Do2z2h_S3rut1103tQcwn7b5GiFcJme1bgNc_dRl8v748LZ-RpvXp5f1aoMMJ2xAla5oLigpWaFZVZZ1aWpOTUaElprncVXBuSkhZ8AragDAAKYFNlVG80wStkxu57lxjenfQXVNMNC22oIbg5KE55kopIjkzR9y50YfDQQlCoolE4JFiMyQiXcHD7XqfdPFMxXBapKtZtkqOlSTbHWMGTpnQmTtFvzv4P9D37k3hUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872093883</pqid></control><display><type>article</type><title>Analyzing results of impedance spectroscopy using novel evolutionary programming techniques</title><source>SpringerNature Journals</source><creator>Tesler, A. B. ; Lewin, D. R. ; Baltianski, S. ; Tsur, Y.</creator><creatorcontrib>Tesler, A. B. ; Lewin, D. R. ; Baltianski, S. ; Tsur, Y.</creatorcontrib><description>This paper discusses the application of evolutionary programming methods to the problem of analyzing impedance spectroscopy results. The basic approach is a “direct-problem” one, i.e., to find a time constant distribution function that would create similar impedance results as the measured ones, within experimental error. Two complementary methods have been applied and are discussed here: Genetic Algorithm (GA) and Genetic Programming (GP). A GA can be applied when a known (or desired) model exists, whereas GP can be used to create new models where the only a-priori knowledge is their smoothness and their non-negativity. GP is tuned to prefer relatively non-complex models through penalization of unnecessary complexity.</description><identifier>ISSN: 1385-3449</identifier><identifier>EISSN: 1573-8663</identifier><identifier>DOI: 10.1007/s10832-009-9565-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Crystallography and Scattering Methods ; Electrochemistry ; Error analysis ; Evolutionary algorithms ; Genetic algorithms ; Genetics ; Glass ; Impedance spectroscopy ; Materials Science ; Mathematical models ; Natural Materials ; Optical and Electronic Materials ; Programming</subject><ispartof>Journal of electroceramics, 2010-06, Vol.24 (4), p.245-260</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-dad26821b37a3dbbfbcf42c518a9a46000844cbe63e4d2ceeece0270cd5265913</citedby><cites>FETCH-LOGICAL-c413t-dad26821b37a3dbbfbcf42c518a9a46000844cbe63e4d2ceeece0270cd5265913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10832-009-9565-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10832-009-9565-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Tesler, A. B.</creatorcontrib><creatorcontrib>Lewin, D. R.</creatorcontrib><creatorcontrib>Baltianski, S.</creatorcontrib><creatorcontrib>Tsur, Y.</creatorcontrib><title>Analyzing results of impedance spectroscopy using novel evolutionary programming techniques</title><title>Journal of electroceramics</title><addtitle>J Electroceram</addtitle><description>This paper discusses the application of evolutionary programming methods to the problem of analyzing impedance spectroscopy results. The basic approach is a “direct-problem” one, i.e., to find a time constant distribution function that would create similar impedance results as the measured ones, within experimental error. Two complementary methods have been applied and are discussed here: Genetic Algorithm (GA) and Genetic Programming (GP). A GA can be applied when a known (or desired) model exists, whereas GP can be used to create new models where the only a-priori knowledge is their smoothness and their non-negativity. GP is tuned to prefer relatively non-complex models through penalization of unnecessary complexity.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemistry</subject><subject>Error analysis</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Glass</subject><subject>Impedance spectroscopy</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Programming</subject><issn>1385-3449</issn><issn>1573-8663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosouK7-AG_Fi6dovtomx2XxCxa86MlDSNPp2qVNatIu7P56UyoIgqcJzPNOZp4kuSb4jmBc3AeCBaMIY4lklmfoeJIsSFYwJPKcncY3ExlinMvz5CKEHY6g4GSRfKysbg_Hxm5TD2Fsh5C6Om26HiptDaShBzN4F4zrD-kYJs66PbQp7F07Do2z2h_S3rut1103tQcwn7b5GiFcJme1bgNc_dRl8v748LZ-RpvXp5f1aoMMJ2xAla5oLigpWaFZVZZ1aWpOTUaElprncVXBuSkhZ8AragDAAKYFNlVG80wStkxu57lxjenfQXVNMNC22oIbg5KE55kopIjkzR9y50YfDQQlCoolE4JFiMyQiXcHD7XqfdPFMxXBapKtZtkqOlSTbHWMGTpnQmTtFvzv4P9D37k3hUs</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tesler, A. B.</creator><creator>Lewin, D. R.</creator><creator>Baltianski, S.</creator><creator>Tsur, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100601</creationdate><title>Analyzing results of impedance spectroscopy using novel evolutionary programming techniques</title><author>Tesler, A. B. ; Lewin, D. R. ; Baltianski, S. ; Tsur, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-dad26821b37a3dbbfbcf42c518a9a46000844cbe63e4d2ceeece0270cd5265913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemistry</topic><topic>Error analysis</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Glass</topic><topic>Impedance spectroscopy</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tesler, A. B.</creatorcontrib><creatorcontrib>Lewin, D. R.</creatorcontrib><creatorcontrib>Baltianski, S.</creatorcontrib><creatorcontrib>Tsur, Y.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electroceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tesler, A. B.</au><au>Lewin, D. R.</au><au>Baltianski, S.</au><au>Tsur, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing results of impedance spectroscopy using novel evolutionary programming techniques</atitle><jtitle>Journal of electroceramics</jtitle><stitle>J Electroceram</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>24</volume><issue>4</issue><spage>245</spage><epage>260</epage><pages>245-260</pages><issn>1385-3449</issn><eissn>1573-8663</eissn><abstract>This paper discusses the application of evolutionary programming methods to the problem of analyzing impedance spectroscopy results. The basic approach is a “direct-problem” one, i.e., to find a time constant distribution function that would create similar impedance results as the measured ones, within experimental error. Two complementary methods have been applied and are discussed here: Genetic Algorithm (GA) and Genetic Programming (GP). A GA can be applied when a known (or desired) model exists, whereas GP can be used to create new models where the only a-priori knowledge is their smoothness and their non-negativity. GP is tuned to prefer relatively non-complex models through penalization of unnecessary complexity.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10832-009-9565-z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-3449
ispartof Journal of electroceramics, 2010-06, Vol.24 (4), p.245-260
issn 1385-3449
1573-8663
language eng
recordid cdi_proquest_miscellaneous_914658798
source SpringerNature Journals
subjects Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Crystallography and Scattering Methods
Electrochemistry
Error analysis
Evolutionary algorithms
Genetic algorithms
Genetics
Glass
Impedance spectroscopy
Materials Science
Mathematical models
Natural Materials
Optical and Electronic Materials
Programming
title Analyzing results of impedance spectroscopy using novel evolutionary programming techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20results%20of%20impedance%20spectroscopy%20using%20novel%20evolutionary%20programming%20techniques&rft.jtitle=Journal%20of%20electroceramics&rft.au=Tesler,%20A.%20B.&rft.date=2010-06-01&rft.volume=24&rft.issue=4&rft.spage=245&rft.epage=260&rft.pages=245-260&rft.issn=1385-3449&rft.eissn=1573-8663&rft_id=info:doi/10.1007/s10832-009-9565-z&rft_dat=%3Cproquest_cross%3E914658798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872093883&rft_id=info:pmid/&rfr_iscdi=true