Noise covariances estimation for systems with bias states
This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covaria...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2000-01, Vol.36 (1), p.226-233 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 1 |
container_start_page | 226 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 36 |
creator | Um, Tae Yoon Lee, Jang Gyu Park, Seong-Taek Park, Chan Gook |
description | This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method. |
doi_str_mv | 10.1109/7.826324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914656776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>826324</ieee_id><sourcerecordid>28445697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgCtYHePa0eFAvW_N-HKX4gqKX3kM2O4sp7aZutkq_vSlbPHjQHkII-THMzB-hC4LHhGBzp8aaSkb5ARoRIVRpJGaHaIQx0aWhghyjk5Tm-ck1ZyNkXmNIUPj46brgWg-pgNSHpetDbIsmdkXapB6WqfgK_XtRBZeK1Lse0hk6atwiwfnuPkWzx4fZ5Lmcvj29TO6npedU9SWYxgFQpZVwVSU8BaeU4K42Lh8tiMeyBixqXuHayQZIzbiXwmMqJWHsFN0MZVdd_Fjn3uwyJA-LhWshrpM1hEshlZJZXv8pqTYKY2n2gJwLadT_UEnOuML7QMoY3U5z9QvO47pr8_6s1lxrJhTN6HZAvospddDYVZcT6TaWYLsN2So7hJzp5UADAPyw3ec3-F2f7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884883572</pqid></control><display><type>article</type><title>Noise covariances estimation for systems with bias states</title><source>IEEE Electronic Library (IEL)</source><creator>Um, Tae Yoon ; Lee, Jang Gyu ; Park, Seong-Taek ; Park, Chan Gook</creator><creatorcontrib>Um, Tae Yoon ; Lee, Jang Gyu ; Park, Seong-Taek ; Park, Chan Gook</creatorcontrib><description>This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.826324</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic control ; Bias ; Computer simulation ; Control systems ; Electric variables control ; Estimates ; Inertial navigation ; Mathematical analysis ; Noise ; Nonlinear filters ; Representations ; State estimation ; Statistics ; Stochastic systems ; Strapdown inertial navigation ; Technological innovation ; Yield estimation</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.226-233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</citedby><cites>FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/826324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/826324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Um, Tae Yoon</creatorcontrib><creatorcontrib>Lee, Jang Gyu</creatorcontrib><creatorcontrib>Park, Seong-Taek</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><title>Noise covariances estimation for systems with bias states</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Electric variables control</subject><subject>Estimates</subject><subject>Inertial navigation</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Nonlinear filters</subject><subject>Representations</subject><subject>State estimation</subject><subject>Statistics</subject><subject>Stochastic systems</subject><subject>Strapdown inertial navigation</subject><subject>Technological innovation</subject><subject>Yield estimation</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLAzEQB_AgCtYHePa0eFAvW_N-HKX4gqKX3kM2O4sp7aZutkq_vSlbPHjQHkII-THMzB-hC4LHhGBzp8aaSkb5ARoRIVRpJGaHaIQx0aWhghyjk5Tm-ck1ZyNkXmNIUPj46brgWg-pgNSHpetDbIsmdkXapB6WqfgK_XtRBZeK1Lse0hk6atwiwfnuPkWzx4fZ5Lmcvj29TO6npedU9SWYxgFQpZVwVSU8BaeU4K42Lh8tiMeyBixqXuHayQZIzbiXwmMqJWHsFN0MZVdd_Fjn3uwyJA-LhWshrpM1hEshlZJZXv8pqTYKY2n2gJwLadT_UEnOuML7QMoY3U5z9QvO47pr8_6s1lxrJhTN6HZAvospddDYVZcT6TaWYLsN2So7hJzp5UADAPyw3ec3-F2f7g</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Um, Tae Yoon</creator><creator>Lee, Jang Gyu</creator><creator>Park, Seong-Taek</creator><creator>Park, Chan Gook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200001</creationdate><title>Noise covariances estimation for systems with bias states</title><author>Um, Tae Yoon ; Lee, Jang Gyu ; Park, Seong-Taek ; Park, Chan Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Electric variables control</topic><topic>Estimates</topic><topic>Inertial navigation</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Nonlinear filters</topic><topic>Representations</topic><topic>State estimation</topic><topic>Statistics</topic><topic>Stochastic systems</topic><topic>Strapdown inertial navigation</topic><topic>Technological innovation</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Um, Tae Yoon</creatorcontrib><creatorcontrib>Lee, Jang Gyu</creatorcontrib><creatorcontrib>Park, Seong-Taek</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Um, Tae Yoon</au><au>Lee, Jang Gyu</au><au>Park, Seong-Taek</au><au>Park, Chan Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise covariances estimation for systems with bias states</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2000-01</date><risdate>2000</risdate><volume>36</volume><issue>1</issue><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/7.826324</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.226-233 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_miscellaneous_914656776 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automatic control Bias Computer simulation Control systems Electric variables control Estimates Inertial navigation Mathematical analysis Noise Nonlinear filters Representations State estimation Statistics Stochastic systems Strapdown inertial navigation Technological innovation Yield estimation |
title | Noise covariances estimation for systems with bias states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20covariances%20estimation%20for%20systems%20with%20bias%20states&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Um,%20Tae%20Yoon&rft.date=2000-01&rft.volume=36&rft.issue=1&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.826324&rft_dat=%3Cproquest_RIE%3E28445697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884883572&rft_id=info:pmid/&rft_ieee_id=826324&rfr_iscdi=true |