Noise covariances estimation for systems with bias states

This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covaria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2000-01, Vol.36 (1), p.226-233
Hauptverfasser: Um, Tae Yoon, Lee, Jang Gyu, Park, Seong-Taek, Park, Chan Gook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 1
container_start_page 226
container_title IEEE transactions on aerospace and electronic systems
container_volume 36
creator Um, Tae Yoon
Lee, Jang Gyu
Park, Seong-Taek
Park, Chan Gook
description This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.
doi_str_mv 10.1109/7.826324
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914656776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>826324</ieee_id><sourcerecordid>28445697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgCtYHePa0eFAvW_N-HKX4gqKX3kM2O4sp7aZutkq_vSlbPHjQHkII-THMzB-hC4LHhGBzp8aaSkb5ARoRIVRpJGaHaIQx0aWhghyjk5Tm-ck1ZyNkXmNIUPj46brgWg-pgNSHpetDbIsmdkXapB6WqfgK_XtRBZeK1Lse0hk6atwiwfnuPkWzx4fZ5Lmcvj29TO6npedU9SWYxgFQpZVwVSU8BaeU4K42Lh8tiMeyBixqXuHayQZIzbiXwmMqJWHsFN0MZVdd_Fjn3uwyJA-LhWshrpM1hEshlZJZXv8pqTYKY2n2gJwLadT_UEnOuML7QMoY3U5z9QvO47pr8_6s1lxrJhTN6HZAvospddDYVZcT6TaWYLsN2So7hJzp5UADAPyw3ec3-F2f7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884883572</pqid></control><display><type>article</type><title>Noise covariances estimation for systems with bias states</title><source>IEEE Electronic Library (IEL)</source><creator>Um, Tae Yoon ; Lee, Jang Gyu ; Park, Seong-Taek ; Park, Chan Gook</creator><creatorcontrib>Um, Tae Yoon ; Lee, Jang Gyu ; Park, Seong-Taek ; Park, Chan Gook</creatorcontrib><description>This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.826324</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic control ; Bias ; Computer simulation ; Control systems ; Electric variables control ; Estimates ; Inertial navigation ; Mathematical analysis ; Noise ; Nonlinear filters ; Representations ; State estimation ; Statistics ; Stochastic systems ; Strapdown inertial navigation ; Technological innovation ; Yield estimation</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.226-233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</citedby><cites>FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/826324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/826324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Um, Tae Yoon</creatorcontrib><creatorcontrib>Lee, Jang Gyu</creatorcontrib><creatorcontrib>Park, Seong-Taek</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><title>Noise covariances estimation for systems with bias states</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Electric variables control</subject><subject>Estimates</subject><subject>Inertial navigation</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Nonlinear filters</subject><subject>Representations</subject><subject>State estimation</subject><subject>Statistics</subject><subject>Stochastic systems</subject><subject>Strapdown inertial navigation</subject><subject>Technological innovation</subject><subject>Yield estimation</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLAzEQB_AgCtYHePa0eFAvW_N-HKX4gqKX3kM2O4sp7aZutkq_vSlbPHjQHkII-THMzB-hC4LHhGBzp8aaSkb5ARoRIVRpJGaHaIQx0aWhghyjk5Tm-ck1ZyNkXmNIUPj46brgWg-pgNSHpetDbIsmdkXapB6WqfgK_XtRBZeK1Lse0hk6atwiwfnuPkWzx4fZ5Lmcvj29TO6npedU9SWYxgFQpZVwVSU8BaeU4K42Lh8tiMeyBixqXuHayQZIzbiXwmMqJWHsFN0MZVdd_Fjn3uwyJA-LhWshrpM1hEshlZJZXv8pqTYKY2n2gJwLadT_UEnOuML7QMoY3U5z9QvO47pr8_6s1lxrJhTN6HZAvospddDYVZcT6TaWYLsN2So7hJzp5UADAPyw3ec3-F2f7g</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Um, Tae Yoon</creator><creator>Lee, Jang Gyu</creator><creator>Park, Seong-Taek</creator><creator>Park, Chan Gook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200001</creationdate><title>Noise covariances estimation for systems with bias states</title><author>Um, Tae Yoon ; Lee, Jang Gyu ; Park, Seong-Taek ; Park, Chan Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e9faee27875abb5c2ea7754ad9aad9851c06de05d4b0da6fe1d34c65c0266133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Electric variables control</topic><topic>Estimates</topic><topic>Inertial navigation</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Nonlinear filters</topic><topic>Representations</topic><topic>State estimation</topic><topic>Statistics</topic><topic>Stochastic systems</topic><topic>Strapdown inertial navigation</topic><topic>Technological innovation</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Um, Tae Yoon</creatorcontrib><creatorcontrib>Lee, Jang Gyu</creatorcontrib><creatorcontrib>Park, Seong-Taek</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Um, Tae Yoon</au><au>Lee, Jang Gyu</au><au>Park, Seong-Taek</au><au>Park, Chan Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise covariances estimation for systems with bias states</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2000-01</date><risdate>2000</risdate><volume>36</volume><issue>1</issue><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/7.826324</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.226-233
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_914656776
source IEEE Electronic Library (IEL)
subjects Algorithms
Automatic control
Bias
Computer simulation
Control systems
Electric variables control
Estimates
Inertial navigation
Mathematical analysis
Noise
Nonlinear filters
Representations
State estimation
Statistics
Stochastic systems
Strapdown inertial navigation
Technological innovation
Yield estimation
title Noise covariances estimation for systems with bias states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20covariances%20estimation%20for%20systems%20with%20bias%20states&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Um,%20Tae%20Yoon&rft.date=2000-01&rft.volume=36&rft.issue=1&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.826324&rft_dat=%3Cproquest_RIE%3E28445697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884883572&rft_id=info:pmid/&rft_ieee_id=826324&rfr_iscdi=true