HTS Magnet for Maglev Applications (1)- Coil Characteristics
We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.1100-1103 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 2 |
container_start_page | 1100 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 16 |
creator | Tasaki, K. Marukawa, K. Hanai, S. Tosaka, T. Kuriyama, T. Yamashita, T. Yanase, Y. Yamaji, M. Nakao, H. Igarashi, M. Kusada, S. Nemoto, K. Hirano, S. Kuwano, K. Okutomi, T. Terai, M. |
description | We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils |
doi_str_mv | 10.1109/TASC.2006.870002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914655128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643041</ieee_id><sourcerecordid>914655128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxYMoWKt3wUsQRD2kzuxnAl5KUCtUPLSew2azq1vSpO6mgv-9CS0UPM2D-b03w4uiS4QJImQPy-kinxAAMUklAJCjaIScpwnhyI97DRyTlBB6Gp2FsAJAljI-ih5ny0X8pj4b08W29YOszU883Wxqp1Xn2ibEd3ifxHnr6jj_Ul7pzngXOqfDeXRiVR3MxX6Oo4_np2U-S-bvL6_5dJ5oykmXECYtCE1KWnLKaCWEroQFiWBLNKoiFaCubCVRUA0KpEwrAlxYlpVEZEjH0e0ud-Pb760JXbF2QZu6Vo1pt6HIkAnOkaQ9ef2PXLVb3_TP9RAhIIWgPQQ7SPs2BG9ssfFurfxvgVAMZRZDmcVQZrErs7fc7HNV0Kq2XjXahYNPZiyTMNy_2nHOGHNYC0aBIf0DQr55sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912207663</pqid></control><display><type>article</type><title>HTS Magnet for Maglev Applications (1)- Coil Characteristics</title><source>IEEE Electronic Library Online</source><creator>Tasaki, K. ; Marukawa, K. ; Hanai, S. ; Tosaka, T. ; Kuriyama, T. ; Yamashita, T. ; Yanase, Y. ; Yamaji, M. ; Nakao, H. ; Igarashi, M. ; Kusada, S. ; Nemoto, K. ; Hirano, S. ; Kuwano, K. ; Okutomi, T. ; Terai, M.</creator><creatorcontrib>Tasaki, K. ; Marukawa, K. ; Hanai, S. ; Tosaka, T. ; Kuriyama, T. ; Yamashita, T. ; Yanase, Y. ; Yamaji, M. ; Nakao, H. ; Igarashi, M. ; Kusada, S. ; Nemoto, K. ; Hirano, S. ; Kuwano, K. ; Okutomi, T. ; Terai, M.</creatorcontrib><description>We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2006.870002</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>APPLICATIONS ; Applied sciences ; Bi2223 wires ; Circuit properties ; Coiling ; Coils ; conduction-cooled HTS coil ; ELECTRIC RAILWAYS ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fabrication ; High temperature superconductors ; maglev ; Magnetic levitation ; Magnetic levitation vehicles ; MAGNETS ; Materials ; MECHANICAL PROPERTIES ; Operating temperature ; persistent current operation ; Persistent currents ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Studies ; Superconducting devices ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Switches ; Switching, multiplexing, switched capacity circuits ; Testing ; Thermal force ; THIN FILMS ; Various equipment and components ; WIRE ; Wires ; Wounds ; YBCO superconductors</subject><ispartof>IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.1100-1103</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</citedby><cites>FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23932,23933,25142,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17949708$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tasaki, K.</creatorcontrib><creatorcontrib>Marukawa, K.</creatorcontrib><creatorcontrib>Hanai, S.</creatorcontrib><creatorcontrib>Tosaka, T.</creatorcontrib><creatorcontrib>Kuriyama, T.</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Yanase, Y.</creatorcontrib><creatorcontrib>Yamaji, M.</creatorcontrib><creatorcontrib>Nakao, H.</creatorcontrib><creatorcontrib>Igarashi, M.</creatorcontrib><creatorcontrib>Kusada, S.</creatorcontrib><creatorcontrib>Nemoto, K.</creatorcontrib><creatorcontrib>Hirano, S.</creatorcontrib><creatorcontrib>Kuwano, K.</creatorcontrib><creatorcontrib>Okutomi, T.</creatorcontrib><creatorcontrib>Terai, M.</creatorcontrib><title>HTS Magnet for Maglev Applications (1)- Coil Characteristics</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils</description><subject>APPLICATIONS</subject><subject>Applied sciences</subject><subject>Bi2223 wires</subject><subject>Circuit properties</subject><subject>Coiling</subject><subject>Coils</subject><subject>conduction-cooled HTS coil</subject><subject>ELECTRIC RAILWAYS</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>High temperature superconductors</subject><subject>maglev</subject><subject>Magnetic levitation</subject><subject>Magnetic levitation vehicles</subject><subject>MAGNETS</subject><subject>Materials</subject><subject>MECHANICAL PROPERTIES</subject><subject>Operating temperature</subject><subject>persistent current operation</subject><subject>Persistent currents</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Studies</subject><subject>Superconducting devices</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Switches</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>Testing</subject><subject>Thermal force</subject><subject>THIN FILMS</subject><subject>Various equipment and components</subject><subject>WIRE</subject><subject>Wires</subject><subject>Wounds</subject><subject>YBCO superconductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxYMoWKt3wUsQRD2kzuxnAl5KUCtUPLSew2azq1vSpO6mgv-9CS0UPM2D-b03w4uiS4QJImQPy-kinxAAMUklAJCjaIScpwnhyI97DRyTlBB6Gp2FsAJAljI-ih5ny0X8pj4b08W29YOszU883Wxqp1Xn2ibEd3ifxHnr6jj_Ul7pzngXOqfDeXRiVR3MxX6Oo4_np2U-S-bvL6_5dJ5oykmXECYtCE1KWnLKaCWEroQFiWBLNKoiFaCubCVRUA0KpEwrAlxYlpVEZEjH0e0ud-Pb760JXbF2QZu6Vo1pt6HIkAnOkaQ9ef2PXLVb3_TP9RAhIIWgPQQ7SPs2BG9ssfFurfxvgVAMZRZDmcVQZrErs7fc7HNV0Kq2XjXahYNPZiyTMNy_2nHOGHNYC0aBIf0DQr55sg</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Tasaki, K.</creator><creator>Marukawa, K.</creator><creator>Hanai, S.</creator><creator>Tosaka, T.</creator><creator>Kuriyama, T.</creator><creator>Yamashita, T.</creator><creator>Yanase, Y.</creator><creator>Yamaji, M.</creator><creator>Nakao, H.</creator><creator>Igarashi, M.</creator><creator>Kusada, S.</creator><creator>Nemoto, K.</creator><creator>Hirano, S.</creator><creator>Kuwano, K.</creator><creator>Okutomi, T.</creator><creator>Terai, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20060601</creationdate><title>HTS Magnet for Maglev Applications (1)- Coil Characteristics</title><author>Tasaki, K. ; Marukawa, K. ; Hanai, S. ; Tosaka, T. ; Kuriyama, T. ; Yamashita, T. ; Yanase, Y. ; Yamaji, M. ; Nakao, H. ; Igarashi, M. ; Kusada, S. ; Nemoto, K. ; Hirano, S. ; Kuwano, K. ; Okutomi, T. ; Terai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>APPLICATIONS</topic><topic>Applied sciences</topic><topic>Bi2223 wires</topic><topic>Circuit properties</topic><topic>Coiling</topic><topic>Coils</topic><topic>conduction-cooled HTS coil</topic><topic>ELECTRIC RAILWAYS</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>High temperature superconductors</topic><topic>maglev</topic><topic>Magnetic levitation</topic><topic>Magnetic levitation vehicles</topic><topic>MAGNETS</topic><topic>Materials</topic><topic>MECHANICAL PROPERTIES</topic><topic>Operating temperature</topic><topic>persistent current operation</topic><topic>Persistent currents</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Studies</topic><topic>Superconducting devices</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Switches</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>Testing</topic><topic>Thermal force</topic><topic>THIN FILMS</topic><topic>Various equipment and components</topic><topic>WIRE</topic><topic>Wires</topic><topic>Wounds</topic><topic>YBCO superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tasaki, K.</creatorcontrib><creatorcontrib>Marukawa, K.</creatorcontrib><creatorcontrib>Hanai, S.</creatorcontrib><creatorcontrib>Tosaka, T.</creatorcontrib><creatorcontrib>Kuriyama, T.</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Yanase, Y.</creatorcontrib><creatorcontrib>Yamaji, M.</creatorcontrib><creatorcontrib>Nakao, H.</creatorcontrib><creatorcontrib>Igarashi, M.</creatorcontrib><creatorcontrib>Kusada, S.</creatorcontrib><creatorcontrib>Nemoto, K.</creatorcontrib><creatorcontrib>Hirano, S.</creatorcontrib><creatorcontrib>Kuwano, K.</creatorcontrib><creatorcontrib>Okutomi, T.</creatorcontrib><creatorcontrib>Terai, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tasaki, K.</au><au>Marukawa, K.</au><au>Hanai, S.</au><au>Tosaka, T.</au><au>Kuriyama, T.</au><au>Yamashita, T.</au><au>Yanase, Y.</au><au>Yamaji, M.</au><au>Nakao, H.</au><au>Igarashi, M.</au><au>Kusada, S.</au><au>Nemoto, K.</au><au>Hirano, S.</au><au>Kuwano, K.</au><au>Okutomi, T.</au><au>Terai, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTS Magnet for Maglev Applications (1)- Coil Characteristics</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>1100</spage><epage>1103</epage><pages>1100-1103</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2006.870002</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.1100-1103 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_914655128 |
source | IEEE Electronic Library Online |
subjects | APPLICATIONS Applied sciences Bi2223 wires Circuit properties Coiling Coils conduction-cooled HTS coil ELECTRIC RAILWAYS Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electromagnets Electronic circuits Electronics Exact sciences and technology Fabrication High temperature superconductors maglev Magnetic levitation Magnetic levitation vehicles MAGNETS Materials MECHANICAL PROPERTIES Operating temperature persistent current operation Persistent currents Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Studies Superconducting devices SUPERCONDUCTIVITY SUPERCONDUCTORS Switches Switching, multiplexing, switched capacity circuits Testing Thermal force THIN FILMS Various equipment and components WIRE Wires Wounds YBCO superconductors |
title | HTS Magnet for Maglev Applications (1)- Coil Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTS%20Magnet%20for%20Maglev%20Applications%20(1)-%20Coil%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Tasaki,%20K.&rft.date=2006-06-01&rft.volume=16&rft.issue=2&rft.spage=1100&rft.epage=1103&rft.pages=1100-1103&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2006.870002&rft_dat=%3Cproquest_RIE%3E914655128%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912207663&rft_id=info:pmid/&rft_ieee_id=1643041&rfr_iscdi=true |