HTS Magnet for Maglev Applications (1)- Coil Characteristics

We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.1100-1103
Hauptverfasser: Tasaki, K., Marukawa, K., Hanai, S., Tosaka, T., Kuriyama, T., Yamashita, T., Yanase, Y., Yamaji, M., Nakao, H., Igarashi, M., Kusada, S., Nemoto, K., Hirano, S., Kuwano, K., Okutomi, T., Terai, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1103
container_issue 2
container_start_page 1100
container_title IEEE transactions on applied superconductivity
container_volume 16
creator Tasaki, K.
Marukawa, K.
Hanai, S.
Tosaka, T.
Kuriyama, T.
Yamashita, T.
Yanase, Y.
Yamaji, M.
Nakao, H.
Igarashi, M.
Kusada, S.
Nemoto, K.
Hirano, S.
Kuwano, K.
Okutomi, T.
Terai, M.
description We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils
doi_str_mv 10.1109/TASC.2006.870002
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914655128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643041</ieee_id><sourcerecordid>914655128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxYMoWKt3wUsQRD2kzuxnAl5KUCtUPLSew2azq1vSpO6mgv-9CS0UPM2D-b03w4uiS4QJImQPy-kinxAAMUklAJCjaIScpwnhyI97DRyTlBB6Gp2FsAJAljI-ih5ny0X8pj4b08W29YOszU883Wxqp1Xn2ibEd3ifxHnr6jj_Ul7pzngXOqfDeXRiVR3MxX6Oo4_np2U-S-bvL6_5dJ5oykmXECYtCE1KWnLKaCWEroQFiWBLNKoiFaCubCVRUA0KpEwrAlxYlpVEZEjH0e0ud-Pb760JXbF2QZu6Vo1pt6HIkAnOkaQ9ef2PXLVb3_TP9RAhIIWgPQQ7SPs2BG9ssfFurfxvgVAMZRZDmcVQZrErs7fc7HNV0Kq2XjXahYNPZiyTMNy_2nHOGHNYC0aBIf0DQr55sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912207663</pqid></control><display><type>article</type><title>HTS Magnet for Maglev Applications (1)- Coil Characteristics</title><source>IEEE Electronic Library Online</source><creator>Tasaki, K. ; Marukawa, K. ; Hanai, S. ; Tosaka, T. ; Kuriyama, T. ; Yamashita, T. ; Yanase, Y. ; Yamaji, M. ; Nakao, H. ; Igarashi, M. ; Kusada, S. ; Nemoto, K. ; Hirano, S. ; Kuwano, K. ; Okutomi, T. ; Terai, M.</creator><creatorcontrib>Tasaki, K. ; Marukawa, K. ; Hanai, S. ; Tosaka, T. ; Kuriyama, T. ; Yamashita, T. ; Yanase, Y. ; Yamaji, M. ; Nakao, H. ; Igarashi, M. ; Kusada, S. ; Nemoto, K. ; Hirano, S. ; Kuwano, K. ; Okutomi, T. ; Terai, M.</creatorcontrib><description>We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2006.870002</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>APPLICATIONS ; Applied sciences ; Bi2223 wires ; Circuit properties ; Coiling ; Coils ; conduction-cooled HTS coil ; ELECTRIC RAILWAYS ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fabrication ; High temperature superconductors ; maglev ; Magnetic levitation ; Magnetic levitation vehicles ; MAGNETS ; Materials ; MECHANICAL PROPERTIES ; Operating temperature ; persistent current operation ; Persistent currents ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Studies ; Superconducting devices ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Switches ; Switching, multiplexing, switched capacity circuits ; Testing ; Thermal force ; THIN FILMS ; Various equipment and components ; WIRE ; Wires ; Wounds ; YBCO superconductors</subject><ispartof>IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.1100-1103</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</citedby><cites>FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23932,23933,25142,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17949708$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tasaki, K.</creatorcontrib><creatorcontrib>Marukawa, K.</creatorcontrib><creatorcontrib>Hanai, S.</creatorcontrib><creatorcontrib>Tosaka, T.</creatorcontrib><creatorcontrib>Kuriyama, T.</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Yanase, Y.</creatorcontrib><creatorcontrib>Yamaji, M.</creatorcontrib><creatorcontrib>Nakao, H.</creatorcontrib><creatorcontrib>Igarashi, M.</creatorcontrib><creatorcontrib>Kusada, S.</creatorcontrib><creatorcontrib>Nemoto, K.</creatorcontrib><creatorcontrib>Hirano, S.</creatorcontrib><creatorcontrib>Kuwano, K.</creatorcontrib><creatorcontrib>Okutomi, T.</creatorcontrib><creatorcontrib>Terai, M.</creatorcontrib><title>HTS Magnet for Maglev Applications (1)- Coil Characteristics</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils</description><subject>APPLICATIONS</subject><subject>Applied sciences</subject><subject>Bi2223 wires</subject><subject>Circuit properties</subject><subject>Coiling</subject><subject>Coils</subject><subject>conduction-cooled HTS coil</subject><subject>ELECTRIC RAILWAYS</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>High temperature superconductors</subject><subject>maglev</subject><subject>Magnetic levitation</subject><subject>Magnetic levitation vehicles</subject><subject>MAGNETS</subject><subject>Materials</subject><subject>MECHANICAL PROPERTIES</subject><subject>Operating temperature</subject><subject>persistent current operation</subject><subject>Persistent currents</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Studies</subject><subject>Superconducting devices</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Switches</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>Testing</subject><subject>Thermal force</subject><subject>THIN FILMS</subject><subject>Various equipment and components</subject><subject>WIRE</subject><subject>Wires</subject><subject>Wounds</subject><subject>YBCO superconductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxYMoWKt3wUsQRD2kzuxnAl5KUCtUPLSew2azq1vSpO6mgv-9CS0UPM2D-b03w4uiS4QJImQPy-kinxAAMUklAJCjaIScpwnhyI97DRyTlBB6Gp2FsAJAljI-ih5ny0X8pj4b08W29YOszU883Wxqp1Xn2ibEd3ifxHnr6jj_Ul7pzngXOqfDeXRiVR3MxX6Oo4_np2U-S-bvL6_5dJ5oykmXECYtCE1KWnLKaCWEroQFiWBLNKoiFaCubCVRUA0KpEwrAlxYlpVEZEjH0e0ud-Pb760JXbF2QZu6Vo1pt6HIkAnOkaQ9ef2PXLVb3_TP9RAhIIWgPQQ7SPs2BG9ssfFurfxvgVAMZRZDmcVQZrErs7fc7HNV0Kq2XjXahYNPZiyTMNy_2nHOGHNYC0aBIf0DQr55sg</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Tasaki, K.</creator><creator>Marukawa, K.</creator><creator>Hanai, S.</creator><creator>Tosaka, T.</creator><creator>Kuriyama, T.</creator><creator>Yamashita, T.</creator><creator>Yanase, Y.</creator><creator>Yamaji, M.</creator><creator>Nakao, H.</creator><creator>Igarashi, M.</creator><creator>Kusada, S.</creator><creator>Nemoto, K.</creator><creator>Hirano, S.</creator><creator>Kuwano, K.</creator><creator>Okutomi, T.</creator><creator>Terai, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20060601</creationdate><title>HTS Magnet for Maglev Applications (1)- Coil Characteristics</title><author>Tasaki, K. ; Marukawa, K. ; Hanai, S. ; Tosaka, T. ; Kuriyama, T. ; Yamashita, T. ; Yanase, Y. ; Yamaji, M. ; Nakao, H. ; Igarashi, M. ; Kusada, S. ; Nemoto, K. ; Hirano, S. ; Kuwano, K. ; Okutomi, T. ; Terai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-247f06c2b3b5343d66cd6f0710fb1ead2d01cdfd7163c0a0778d2056f49b26913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>APPLICATIONS</topic><topic>Applied sciences</topic><topic>Bi2223 wires</topic><topic>Circuit properties</topic><topic>Coiling</topic><topic>Coils</topic><topic>conduction-cooled HTS coil</topic><topic>ELECTRIC RAILWAYS</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>High temperature superconductors</topic><topic>maglev</topic><topic>Magnetic levitation</topic><topic>Magnetic levitation vehicles</topic><topic>MAGNETS</topic><topic>Materials</topic><topic>MECHANICAL PROPERTIES</topic><topic>Operating temperature</topic><topic>persistent current operation</topic><topic>Persistent currents</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Studies</topic><topic>Superconducting devices</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Switches</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>Testing</topic><topic>Thermal force</topic><topic>THIN FILMS</topic><topic>Various equipment and components</topic><topic>WIRE</topic><topic>Wires</topic><topic>Wounds</topic><topic>YBCO superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tasaki, K.</creatorcontrib><creatorcontrib>Marukawa, K.</creatorcontrib><creatorcontrib>Hanai, S.</creatorcontrib><creatorcontrib>Tosaka, T.</creatorcontrib><creatorcontrib>Kuriyama, T.</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Yanase, Y.</creatorcontrib><creatorcontrib>Yamaji, M.</creatorcontrib><creatorcontrib>Nakao, H.</creatorcontrib><creatorcontrib>Igarashi, M.</creatorcontrib><creatorcontrib>Kusada, S.</creatorcontrib><creatorcontrib>Nemoto, K.</creatorcontrib><creatorcontrib>Hirano, S.</creatorcontrib><creatorcontrib>Kuwano, K.</creatorcontrib><creatorcontrib>Okutomi, T.</creatorcontrib><creatorcontrib>Terai, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tasaki, K.</au><au>Marukawa, K.</au><au>Hanai, S.</au><au>Tosaka, T.</au><au>Kuriyama, T.</au><au>Yamashita, T.</au><au>Yanase, Y.</au><au>Yamaji, M.</au><au>Nakao, H.</au><au>Igarashi, M.</au><au>Kusada, S.</au><au>Nemoto, K.</au><au>Hirano, S.</au><au>Kuwano, K.</au><au>Okutomi, T.</au><au>Terai, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTS Magnet for Maglev Applications (1)- Coil Characteristics</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>1100</spage><epage>1103</epage><pages>1100-1103</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We developed an HTS coil for maglev applications. The magnet consists of four persistent current HTS coils and is operated at a rated temperature of 20 K and a rated magnetomotive force of 750 kA for each coil. This paper describes the fabrication and test results of each persistent current HTS coil. The HTS coil consists of 12 single-pancake coils wound with four parallel Ag-sheathed Bi2223 wires and a persistent current switch (PCS) made of YBCO thin films. The coil is conductively cooled by a cryocooler to approximately 20 K. Persistent current operating tests for four HTS coils at 750 kA were carried out and current decay rates of 0.37-0.68%/day were obtained. Mechanical vibration tests up to plusmn15 (plusmn150 m/s 2 ) were carried out to investigate the mechanical properties of the HTS coils. Temperature increasing tests up to 25 K, which is 5 K higher than the rated operating temperature and higher magnetomotive force operating tests up to 800 kA were carried out to investigate the thermal stability of the coils and check the mechanical strength of the coils</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2006.870002</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.1100-1103
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_914655128
source IEEE Electronic Library Online
subjects APPLICATIONS
Applied sciences
Bi2223 wires
Circuit properties
Coiling
Coils
conduction-cooled HTS coil
ELECTRIC RAILWAYS
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electromagnets
Electronic circuits
Electronics
Exact sciences and technology
Fabrication
High temperature superconductors
maglev
Magnetic levitation
Magnetic levitation vehicles
MAGNETS
Materials
MECHANICAL PROPERTIES
Operating temperature
persistent current operation
Persistent currents
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Studies
Superconducting devices
SUPERCONDUCTIVITY
SUPERCONDUCTORS
Switches
Switching, multiplexing, switched capacity circuits
Testing
Thermal force
THIN FILMS
Various equipment and components
WIRE
Wires
Wounds
YBCO superconductors
title HTS Magnet for Maglev Applications (1)- Coil Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTS%20Magnet%20for%20Maglev%20Applications%20(1)-%20Coil%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Tasaki,%20K.&rft.date=2006-06-01&rft.volume=16&rft.issue=2&rft.spage=1100&rft.epage=1103&rft.pages=1100-1103&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2006.870002&rft_dat=%3Cproquest_RIE%3E914655128%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912207663&rft_id=info:pmid/&rft_ieee_id=1643041&rfr_iscdi=true