Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils

The switching of ultra-high coercivity FePt thin films has been studied by pulsed magnetic fields of up to 25 T, generated with microcoils of 50 mum diameter and using a fast magneto-optical polar Kerr effect setup. Whereas under static measurements, the coercive field reaches 5.5 T, under pulsed ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2006-10, Vol.42 (10), p.3072-3074
Hauptverfasser: Weisheit, M., Bonfim, M., Grechishkin, R., Barthem, V., Fahler, S., Givord, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3074
container_issue 10
container_start_page 3072
container_title IEEE transactions on magnetics
container_volume 42
creator Weisheit, M.
Bonfim, M.
Grechishkin, R.
Barthem, V.
Fahler, S.
Givord, D.
description The switching of ultra-high coercivity FePt thin films has been studied by pulsed magnetic fields of up to 25 T, generated with microcoils of 50 mum diameter and using a fast magneto-optical polar Kerr effect setup. Whereas under static measurements, the coercive field reaches 5.5 T, under pulsed magnetic field it approaches 8 T. An approximation of the Landau-Lifshitz-Gilbert (LLG) equation was used to calculate the magnetization response to the field pulse. Good agreement between experiment and simulation is observed if a value of 0.1 is assumed for the damping constant
doi_str_mv 10.1109/TMAG.2006.880146
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914654952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1704530</ieee_id><sourcerecordid>914654952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e117fc3c12321e98bb4755357971bfbcc95bcb6a21cc1f7097fd14d6a92245293</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWB93wcviRTxszeS1m2MpfQitiigeQzbNtinbjW62Rf3rTVlR8DQzH7-ZYeZD6AJwHwDL2-f5YNInGIt-nmNg4gD1QDJIoyIPUQ9jyFPJBDtGJyGsY8k44B66n-tlbVv3pVvn6-TJ7mwTdJX4Mpm65ar6TIbeNsbtbDK2j20y-tAbV9tF8uraVfK4rULM58403nhXhTN0VOqonf_EU_QyHj0Pp-nsYXI3HMxSQ7loUwuQlYYaIJSAlXlRsIxzyjOZQVEWxkhemEJoAsZAmWGZlQtgC6ElIYwTSU_RTTd3pSv11riNbj6V105NBzO11zCmQEQmdhDZ6459a_z71oZWbVwwtqp0bf02KBm_xZnkJJJX_8i13zZ1PETlEclZLmiEcAfFm0NobPm7H7DaW6H2Vqi9FaqzIrZcdi3OWvuHZ5hxiuk3tI-Cqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865484863</pqid></control><display><type>article</type><title>Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils</title><source>IEEE Electronic Library (IEL)</source><creator>Weisheit, M. ; Bonfim, M. ; Grechishkin, R. ; Barthem, V. ; Fahler, S. ; Givord, D.</creator><creatorcontrib>Weisheit, M. ; Bonfim, M. ; Grechishkin, R. ; Barthem, V. ; Fahler, S. ; Givord, D.</creatorcontrib><description>The switching of ultra-high coercivity FePt thin films has been studied by pulsed magnetic fields of up to 25 T, generated with microcoils of 50 mum diameter and using a fast magneto-optical polar Kerr effect setup. Whereas under static measurements, the coercive field reaches 5.5 T, under pulsed magnetic field it approaches 8 T. An approximation of the Landau-Lifshitz-Gilbert (LLG) equation was used to calculate the magnetization response to the field pulse. Good agreement between experiment and simulation is observed if a value of 0.1 is assumed for the damping constant</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2006.880146</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coercive force ; Condensed Matter ; Damping ; Equations ; FePt ; Ferrous alloys ; hard magnetic thin films ; Intermetallics ; Iron compounds ; Kerr effect ; L10 ; Magnetic field measurement ; Magnetic fields ; Magnetic films ; Magnetic switching ; Magnetism ; Magnetization reversal ; magneto-optic Kerr effect ; Magnetooptic effects ; Materials Science ; Mathematical analysis ; perpendicular magnetic anisotropy ; Physics ; Platinum compounds ; Pulse generation ; Pulse measurements ; pulsed magnetic fields</subject><ispartof>IEEE transactions on magnetics, 2006-10, Vol.42 (10), p.3072-3074</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e117fc3c12321e98bb4755357971bfbcc95bcb6a21cc1f7097fd14d6a92245293</citedby><cites>FETCH-LOGICAL-c356t-e117fc3c12321e98bb4755357971bfbcc95bcb6a21cc1f7097fd14d6a92245293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1704530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1704530$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00312676$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisheit, M.</creatorcontrib><creatorcontrib>Bonfim, M.</creatorcontrib><creatorcontrib>Grechishkin, R.</creatorcontrib><creatorcontrib>Barthem, V.</creatorcontrib><creatorcontrib>Fahler, S.</creatorcontrib><creatorcontrib>Givord, D.</creatorcontrib><title>Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The switching of ultra-high coercivity FePt thin films has been studied by pulsed magnetic fields of up to 25 T, generated with microcoils of 50 mum diameter and using a fast magneto-optical polar Kerr effect setup. Whereas under static measurements, the coercive field reaches 5.5 T, under pulsed magnetic field it approaches 8 T. An approximation of the Landau-Lifshitz-Gilbert (LLG) equation was used to calculate the magnetization response to the field pulse. Good agreement between experiment and simulation is observed if a value of 0.1 is assumed for the damping constant</description><subject>Coercive force</subject><subject>Condensed Matter</subject><subject>Damping</subject><subject>Equations</subject><subject>FePt</subject><subject>Ferrous alloys</subject><subject>hard magnetic thin films</subject><subject>Intermetallics</subject><subject>Iron compounds</subject><subject>Kerr effect</subject><subject>L10</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic films</subject><subject>Magnetic switching</subject><subject>Magnetism</subject><subject>Magnetization reversal</subject><subject>magneto-optic Kerr effect</subject><subject>Magnetooptic effects</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Platinum compounds</subject><subject>Pulse generation</subject><subject>Pulse measurements</subject><subject>pulsed magnetic fields</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctLAzEQxoMoWB93wcviRTxszeS1m2MpfQitiigeQzbNtinbjW62Rf3rTVlR8DQzH7-ZYeZD6AJwHwDL2-f5YNInGIt-nmNg4gD1QDJIoyIPUQ9jyFPJBDtGJyGsY8k44B66n-tlbVv3pVvn6-TJ7mwTdJX4Mpm65ar6TIbeNsbtbDK2j20y-tAbV9tF8uraVfK4rULM58403nhXhTN0VOqonf_EU_QyHj0Pp-nsYXI3HMxSQ7loUwuQlYYaIJSAlXlRsIxzyjOZQVEWxkhemEJoAsZAmWGZlQtgC6ElIYwTSU_RTTd3pSv11riNbj6V105NBzO11zCmQEQmdhDZ6459a_z71oZWbVwwtqp0bf02KBm_xZnkJJJX_8i13zZ1PETlEclZLmiEcAfFm0NobPm7H7DaW6H2Vqi9FaqzIrZcdi3OWvuHZ5hxiuk3tI-Cqg</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Weisheit, M.</creator><creator>Bonfim, M.</creator><creator>Grechishkin, R.</creator><creator>Barthem, V.</creator><creator>Fahler, S.</creator><creator>Givord, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>20061001</creationdate><title>Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils</title><author>Weisheit, M. ; Bonfim, M. ; Grechishkin, R. ; Barthem, V. ; Fahler, S. ; Givord, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e117fc3c12321e98bb4755357971bfbcc95bcb6a21cc1f7097fd14d6a92245293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Coercive force</topic><topic>Condensed Matter</topic><topic>Damping</topic><topic>Equations</topic><topic>FePt</topic><topic>Ferrous alloys</topic><topic>hard magnetic thin films</topic><topic>Intermetallics</topic><topic>Iron compounds</topic><topic>Kerr effect</topic><topic>L10</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic films</topic><topic>Magnetic switching</topic><topic>Magnetism</topic><topic>Magnetization reversal</topic><topic>magneto-optic Kerr effect</topic><topic>Magnetooptic effects</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Platinum compounds</topic><topic>Pulse generation</topic><topic>Pulse measurements</topic><topic>pulsed magnetic fields</topic><toplevel>online_resources</toplevel><creatorcontrib>Weisheit, M.</creatorcontrib><creatorcontrib>Bonfim, M.</creatorcontrib><creatorcontrib>Grechishkin, R.</creatorcontrib><creatorcontrib>Barthem, V.</creatorcontrib><creatorcontrib>Fahler, S.</creatorcontrib><creatorcontrib>Givord, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weisheit, M.</au><au>Bonfim, M.</au><au>Grechishkin, R.</au><au>Barthem, V.</au><au>Fahler, S.</au><au>Givord, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>42</volume><issue>10</issue><spage>3072</spage><epage>3074</epage><pages>3072-3074</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The switching of ultra-high coercivity FePt thin films has been studied by pulsed magnetic fields of up to 25 T, generated with microcoils of 50 mum diameter and using a fast magneto-optical polar Kerr effect setup. Whereas under static measurements, the coercive field reaches 5.5 T, under pulsed magnetic field it approaches 8 T. An approximation of the Landau-Lifshitz-Gilbert (LLG) equation was used to calculate the magnetization response to the field pulse. Good agreement between experiment and simulation is observed if a value of 0.1 is assumed for the damping constant</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2006.880146</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2006-10, Vol.42 (10), p.3072-3074
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_914654952
source IEEE Electronic Library (IEL)
subjects Coercive force
Condensed Matter
Damping
Equations
FePt
Ferrous alloys
hard magnetic thin films
Intermetallics
Iron compounds
Kerr effect
L10
Magnetic field measurement
Magnetic fields
Magnetic films
Magnetic switching
Magnetism
Magnetization reversal
magneto-optic Kerr effect
Magnetooptic effects
Materials Science
Mathematical analysis
perpendicular magnetic anisotropy
Physics
Platinum compounds
Pulse generation
Pulse measurements
pulsed magnetic fields
title Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetization%20Reversal%20of%20Highly%20Coercive%20FePt%20Examined%20With%20Pulsed%20Microcoils&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Weisheit,%20M.&rft.date=2006-10-01&rft.volume=42&rft.issue=10&rft.spage=3072&rft.epage=3074&rft.pages=3072-3074&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2006.880146&rft_dat=%3Cproquest_RIE%3E914654952%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865484863&rft_id=info:pmid/&rft_ieee_id=1704530&rfr_iscdi=true