Ultrasonic Cleaning-Induced Failures in Medical Devices
Ultrasonic cleaning is often used as part of the manufacturing process of small medical devices such as guide wires and vascular implants. Ultrasonic cleaning at frequencies close to the natural frequency of the device can result in resonance, resulting in significant mechanical damage and possibly...
Gespeichert in:
Veröffentlicht in: | Journal of failure analysis and prevention 2010-06, Vol.10 (3), p.223-227 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 3 |
container_start_page | 223 |
container_title | Journal of failure analysis and prevention |
container_volume | 10 |
creator | James, B. A. McVeigh, C. Rosenbloom, S. N. Guyer, E. P. Lieberman, S. I. |
description | Ultrasonic cleaning is often used as part of the manufacturing process of small medical devices such as guide wires and vascular implants. Ultrasonic cleaning at frequencies close to the natural frequency of the device can result in resonance, resulting in significant mechanical damage and possibly premature failure. This paper provides case studies of ultrasonic cleaning-induced fatigue and corresponding failures in small medical devices. Preventative measures, including analytical tools such as finite element analysis (FEA), to ensure that ultrasonic cleaning frequencies do not result in resonance and stresses sufficient to cause fatigue damage are also discussed. |
doi_str_mv | 10.1007/s11668-010-9339-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914654305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2373300701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5f18351749ff52f9ae14959beb538ce509986df4b64f07b2567740dbe44b4a533</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4G4QxFU0yeR3KdVqoeLGrkMmk5SUaaYmHcG3N2VEQXCVCzn3ux8HgEuMbjFC4i5jzLmECCOo6lpBfgQmWBAJGRf0uMyMCigQUafgLOcNQjXDlEyAWHX7ZHIfg61mnTMxxDVcxHawrq3mJnRDcrkKsXpxbbCmqx7cR7Aun4MTb7rsLr7fKVjNH99mz3D5-rSY3S-hrYXYQ-axLJcEVd4z4pVxmCqmGtewWlrHkFKSt542nHokGlLaCoraxlHaUMPqegpuxtxd6t8Hl_d6G7J1XWei64esFaac0RqxQl79ITf9kGIpp6UoVxXjskB4hGzqc07O610KW5M-NUb6IFKPInURqQ8iNS8719_BJhcDPploQ_5ZJESW2gQVjoxcLl9x7dJvgf_DvwDvYYBe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871499568</pqid></control><display><type>article</type><title>Ultrasonic Cleaning-Induced Failures in Medical Devices</title><source>SpringerLink Journals</source><creator>James, B. A. ; McVeigh, C. ; Rosenbloom, S. N. ; Guyer, E. P. ; Lieberman, S. I.</creator><creatorcontrib>James, B. A. ; McVeigh, C. ; Rosenbloom, S. N. ; Guyer, E. P. ; Lieberman, S. I.</creatorcontrib><description>Ultrasonic cleaning is often used as part of the manufacturing process of small medical devices such as guide wires and vascular implants. Ultrasonic cleaning at frequencies close to the natural frequency of the device can result in resonance, resulting in significant mechanical damage and possibly premature failure. This paper provides case studies of ultrasonic cleaning-induced fatigue and corresponding failures in small medical devices. Preventative measures, including analytical tools such as finite element analysis (FEA), to ensure that ultrasonic cleaning frequencies do not result in resonance and stresses sufficient to cause fatigue damage are also discussed.</description><identifier>ISSN: 1547-7029</identifier><identifier>EISSN: 1728-5674</identifier><identifier>EISSN: 1864-1245</identifier><identifier>DOI: 10.1007/s11668-010-9339-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biological and medical sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cleaning ; Corrosion and Coatings ; Crack propagation ; Exact sciences and technology ; Fatigue failure ; Finite element method ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Guide wires ; Materials Science ; Mathematical analysis ; Medical sciences ; Physics ; Quality Control ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reliability ; Safety and Risk ; Solid Mechanics ; Structural and continuum mechanics ; Surgical implants ; Technical Article---Peer-Reviewed ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Tribology ; Ultrasonic cleaning</subject><ispartof>Journal of failure analysis and prevention, 2010-06, Vol.10 (3), p.223-227</ispartof><rights>ASM International 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5f18351749ff52f9ae14959beb538ce509986df4b64f07b2567740dbe44b4a533</citedby><cites>FETCH-LOGICAL-c377t-5f18351749ff52f9ae14959beb538ce509986df4b64f07b2567740dbe44b4a533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22825620$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>James, B. A.</creatorcontrib><creatorcontrib>McVeigh, C.</creatorcontrib><creatorcontrib>Rosenbloom, S. N.</creatorcontrib><creatorcontrib>Guyer, E. P.</creatorcontrib><creatorcontrib>Lieberman, S. I.</creatorcontrib><title>Ultrasonic Cleaning-Induced Failures in Medical Devices</title><title>Journal of failure analysis and prevention</title><addtitle>J Fail. Anal. and Preven</addtitle><description>Ultrasonic cleaning is often used as part of the manufacturing process of small medical devices such as guide wires and vascular implants. Ultrasonic cleaning at frequencies close to the natural frequency of the device can result in resonance, resulting in significant mechanical damage and possibly premature failure. This paper provides case studies of ultrasonic cleaning-induced fatigue and corresponding failures in small medical devices. Preventative measures, including analytical tools such as finite element analysis (FEA), to ensure that ultrasonic cleaning frequencies do not result in resonance and stresses sufficient to cause fatigue damage are also discussed.</description><subject>Biological and medical sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cleaning</subject><subject>Corrosion and Coatings</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Guide wires</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Medical sciences</subject><subject>Physics</subject><subject>Quality Control</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Solid Mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Surgical implants</subject><subject>Technical Article---Peer-Reviewed</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Tribology</subject><subject>Ultrasonic cleaning</subject><issn>1547-7029</issn><issn>1728-5674</issn><issn>1864-1245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEURoMoWKsP4G4QxFU0yeR3KdVqoeLGrkMmk5SUaaYmHcG3N2VEQXCVCzn3ux8HgEuMbjFC4i5jzLmECCOo6lpBfgQmWBAJGRf0uMyMCigQUafgLOcNQjXDlEyAWHX7ZHIfg61mnTMxxDVcxHawrq3mJnRDcrkKsXpxbbCmqx7cR7Aun4MTb7rsLr7fKVjNH99mz3D5-rSY3S-hrYXYQ-axLJcEVd4z4pVxmCqmGtewWlrHkFKSt542nHokGlLaCoraxlHaUMPqegpuxtxd6t8Hl_d6G7J1XWei64esFaac0RqxQl79ITf9kGIpp6UoVxXjskB4hGzqc07O610KW5M-NUb6IFKPInURqQ8iNS8719_BJhcDPploQ_5ZJESW2gQVjoxcLl9x7dJvgf_DvwDvYYBe</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>James, B. A.</creator><creator>McVeigh, C.</creator><creator>Rosenbloom, S. N.</creator><creator>Guyer, E. P.</creator><creator>Lieberman, S. I.</creator><general>Springer US</general><general>ASM International</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100601</creationdate><title>Ultrasonic Cleaning-Induced Failures in Medical Devices</title><author>James, B. A. ; McVeigh, C. ; Rosenbloom, S. N. ; Guyer, E. P. ; Lieberman, S. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5f18351749ff52f9ae14959beb538ce509986df4b64f07b2567740dbe44b4a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cleaning</topic><topic>Corrosion and Coatings</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Guide wires</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Medical sciences</topic><topic>Physics</topic><topic>Quality Control</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Solid Mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Surgical implants</topic><topic>Technical Article---Peer-Reviewed</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Tribology</topic><topic>Ultrasonic cleaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, B. A.</creatorcontrib><creatorcontrib>McVeigh, C.</creatorcontrib><creatorcontrib>Rosenbloom, S. N.</creatorcontrib><creatorcontrib>Guyer, E. P.</creatorcontrib><creatorcontrib>Lieberman, S. I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of failure analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, B. A.</au><au>McVeigh, C.</au><au>Rosenbloom, S. N.</au><au>Guyer, E. P.</au><au>Lieberman, S. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic Cleaning-Induced Failures in Medical Devices</atitle><jtitle>Journal of failure analysis and prevention</jtitle><stitle>J Fail. Anal. and Preven</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>10</volume><issue>3</issue><spage>223</spage><epage>227</epage><pages>223-227</pages><issn>1547-7029</issn><eissn>1728-5674</eissn><eissn>1864-1245</eissn><abstract>Ultrasonic cleaning is often used as part of the manufacturing process of small medical devices such as guide wires and vascular implants. Ultrasonic cleaning at frequencies close to the natural frequency of the device can result in resonance, resulting in significant mechanical damage and possibly premature failure. This paper provides case studies of ultrasonic cleaning-induced fatigue and corresponding failures in small medical devices. Preventative measures, including analytical tools such as finite element analysis (FEA), to ensure that ultrasonic cleaning frequencies do not result in resonance and stresses sufficient to cause fatigue damage are also discussed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11668-010-9339-6</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-7029 |
ispartof | Journal of failure analysis and prevention, 2010-06, Vol.10 (3), p.223-227 |
issn | 1547-7029 1728-5674 1864-1245 |
language | eng |
recordid | cdi_proquest_miscellaneous_914654305 |
source | SpringerLink Journals |
subjects | Biological and medical sciences Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Cleaning Corrosion and Coatings Crack propagation Exact sciences and technology Fatigue failure Finite element method Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Guide wires Materials Science Mathematical analysis Medical sciences Physics Quality Control Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Reliability Safety and Risk Solid Mechanics Structural and continuum mechanics Surgical implants Technical Article---Peer-Reviewed Technology. Biomaterials. Equipments. Material. Instrumentation Tribology Ultrasonic cleaning |
title | Ultrasonic Cleaning-Induced Failures in Medical Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20Cleaning-Induced%20Failures%20in%20Medical%20Devices&rft.jtitle=Journal%20of%20failure%20analysis%20and%20prevention&rft.au=James,%20B.%20A.&rft.date=2010-06-01&rft.volume=10&rft.issue=3&rft.spage=223&rft.epage=227&rft.pages=223-227&rft.issn=1547-7029&rft.eissn=1728-5674&rft_id=info:doi/10.1007/s11668-010-9339-6&rft_dat=%3Cproquest_cross%3E2373300701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871499568&rft_id=info:pmid/&rfr_iscdi=true |