Classes of smoothed Weyl symbols

We propose a new class of time frequency (TF) symbols covariant to time shifts and frequency shifts on a random process. The new TF symbols are useful for analyzing linear time-varying systems or nonstationary random processes, and they are defined as TF-smoothed versions of the narrowband Weyl symb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2000-07, Vol.7 (7), p.186-188
Hauptverfasser: Iem, B.-G., Papandreou-Suppappola, A., Boudreaux-Bartels, G.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new class of time frequency (TF) symbols covariant to time shifts and frequency shifts on a random process. The new TF symbols are useful for analyzing linear time-varying systems or nonstationary random processes, and they are defined as TF-smoothed versions of the narrowband Weyl symbol. We derive kernel constraints for the new TF symbols to satisfy the unitarity property and the quadratic form. We also propose a new class of TF symbols covariant to time shifts and scale changes on a random process. These new TF symbols can be interpreted as affine-smoothed versions of the narrowband Weyl symbol or of the wideband P/sub 0/-Weyl symbol.
ISSN:1070-9908
1558-2361
DOI:10.1109/97.847364