Modelling and FDI of Dynamic Discrete Time Systems Using a MLP with a New Sigmoidal Activation Function

In this paper we investigate the use of the multi-layer perceptron (MLP) for system modelling. A new sigmoidal activation function is introduced and the study is focused at the utilization of this function on a MLP that performs modelling of dynamic, discrete time systems. The role of the activation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2004-09, Vol.41 (1), p.19-36
Hauptverfasser: Skoundrianos, E N, Tzafestas, S G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 19
container_title Journal of intelligent & robotic systems
container_volume 41
creator Skoundrianos, E N
Tzafestas, S G
description In this paper we investigate the use of the multi-layer perceptron (MLP) for system modelling. A new sigmoidal activation function is introduced and the study is focused at the utilization of this function on a MLP that performs modelling of dynamic, discrete time systems. The role of the activation function in the training process is investigated analytically, and it is proven that the shape of the activation function and it's derivative can affect the training outcome. The method is simulated at a well known benchmark, namely the three tank system, and is incorporated in a Fault Detection and Identification (FDI) method, also applied and simulated at the three tank system. Finally, a comparison is made with an approach that utilizes local model neural networks for system modeling.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/B:JINT.0000049175.78893.2f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914651056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>914651056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5026135ad4623c3046d4dec953527f7140f3043514082172c98019536f59eeb93</originalsourceid><addsrcrecordid>eNp9kV9PwjAUxRujiYh-h4YHfdrsn3VdeQMRxQCaAM_N7Dos2VZch4RvbwcmJj54X-7Jvb-c5OQA0MMoxIjQ-2H_ZTJfhqidSGDOQp4kgoYkPwMdzDgNUITEOeggQXCAiIgvwZVzG4-LhIkOWM9spovCVGuYVhkcjybQ5nB0qNLSKDgyTtW60XBpSg0XB9fo0sGVO-JwNn2De9N8eDnXe7gw69KaLC3gQDXmK22MreB4V6lWXIOLPC2cvvnZXbAaPy4fnoPp69PkYTANFGW0CRgiMaYszaKYUEVRFGdRppVglBGecxyh3B8p8yIhmBMlEoT9N86Z0Ppd0C64O_lua_u5066Rpc_gE6aVtjsnBY5ihhGLPXn7L0kE4Zig1rL3B9zYXV35FDJJcMwp4sxD_ROkautcrXO5rU2Z1geJkWyrkkPZViV_q5LHqiTJ6TcXNYTL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881673075</pqid></control><display><type>article</type><title>Modelling and FDI of Dynamic Discrete Time Systems Using a MLP with a New Sigmoidal Activation Function</title><source>SpringerNature Journals</source><creator>Skoundrianos, E N ; Tzafestas, S G</creator><creatorcontrib>Skoundrianos, E N ; Tzafestas, S G</creatorcontrib><description>In this paper we investigate the use of the multi-layer perceptron (MLP) for system modelling. A new sigmoidal activation function is introduced and the study is focused at the utilization of this function on a MLP that performs modelling of dynamic, discrete time systems. The role of the activation function in the training process is investigated analytically, and it is proven that the shape of the activation function and it's derivative can affect the training outcome. The method is simulated at a well known benchmark, namely the three tank system, and is incorporated in a Fault Detection and Identification (FDI) method, also applied and simulated at the three tank system. Finally, a comparison is made with an approach that utilizes local model neural networks for system modeling.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1023/B:JINT.0000049175.78893.2f</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Activation ; Activation analysis ; Computer simulation ; Discrete time systems ; Dynamical systems ; Dynamics ; Mathematical models ; Studies ; Tanks</subject><ispartof>Journal of intelligent &amp; robotic systems, 2004-09, Vol.41 (1), p.19-36</ispartof><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5026135ad4623c3046d4dec953527f7140f3043514082172c98019536f59eeb93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Skoundrianos, E N</creatorcontrib><creatorcontrib>Tzafestas, S G</creatorcontrib><title>Modelling and FDI of Dynamic Discrete Time Systems Using a MLP with a New Sigmoidal Activation Function</title><title>Journal of intelligent &amp; robotic systems</title><description>In this paper we investigate the use of the multi-layer perceptron (MLP) for system modelling. A new sigmoidal activation function is introduced and the study is focused at the utilization of this function on a MLP that performs modelling of dynamic, discrete time systems. The role of the activation function in the training process is investigated analytically, and it is proven that the shape of the activation function and it's derivative can affect the training outcome. The method is simulated at a well known benchmark, namely the three tank system, and is incorporated in a Fault Detection and Identification (FDI) method, also applied and simulated at the three tank system. Finally, a comparison is made with an approach that utilizes local model neural networks for system modeling.[PUBLICATION ABSTRACT]</description><subject>Activation</subject><subject>Activation analysis</subject><subject>Computer simulation</subject><subject>Discrete time systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Tanks</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9PwjAUxRujiYh-h4YHfdrsn3VdeQMRxQCaAM_N7Dos2VZch4RvbwcmJj54X-7Jvb-c5OQA0MMoxIjQ-2H_ZTJfhqidSGDOQp4kgoYkPwMdzDgNUITEOeggQXCAiIgvwZVzG4-LhIkOWM9spovCVGuYVhkcjybQ5nB0qNLSKDgyTtW60XBpSg0XB9fo0sGVO-JwNn2De9N8eDnXe7gw69KaLC3gQDXmK22MreB4V6lWXIOLPC2cvvnZXbAaPy4fnoPp69PkYTANFGW0CRgiMaYszaKYUEVRFGdRppVglBGecxyh3B8p8yIhmBMlEoT9N86Z0Ppd0C64O_lua_u5066Rpc_gE6aVtjsnBY5ihhGLPXn7L0kE4Zig1rL3B9zYXV35FDJJcMwp4sxD_ROkautcrXO5rU2Z1geJkWyrkkPZViV_q5LHqiTJ6TcXNYTL</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Skoundrianos, E N</creator><creator>Tzafestas, S G</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20040901</creationdate><title>Modelling and FDI of Dynamic Discrete Time Systems Using a MLP with a New Sigmoidal Activation Function</title><author>Skoundrianos, E N ; Tzafestas, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5026135ad4623c3046d4dec953527f7140f3043514082172c98019536f59eeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Activation</topic><topic>Activation analysis</topic><topic>Computer simulation</topic><topic>Discrete time systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skoundrianos, E N</creatorcontrib><creatorcontrib>Tzafestas, S G</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skoundrianos, E N</au><au>Tzafestas, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and FDI of Dynamic Discrete Time Systems Using a MLP with a New Sigmoidal Activation Function</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>41</volume><issue>1</issue><spage>19</spage><epage>36</epage><pages>19-36</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In this paper we investigate the use of the multi-layer perceptron (MLP) for system modelling. A new sigmoidal activation function is introduced and the study is focused at the utilization of this function on a MLP that performs modelling of dynamic, discrete time systems. The role of the activation function in the training process is investigated analytically, and it is proven that the shape of the activation function and it's derivative can affect the training outcome. The method is simulated at a well known benchmark, namely the three tank system, and is incorporated in a Fault Detection and Identification (FDI) method, also applied and simulated at the three tank system. Finally, a comparison is made with an approach that utilizes local model neural networks for system modeling.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/B:JINT.0000049175.78893.2f</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2004-09, Vol.41 (1), p.19-36
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_miscellaneous_914651056
source SpringerNature Journals
subjects Activation
Activation analysis
Computer simulation
Discrete time systems
Dynamical systems
Dynamics
Mathematical models
Studies
Tanks
title Modelling and FDI of Dynamic Discrete Time Systems Using a MLP with a New Sigmoidal Activation Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20FDI%20of%20Dynamic%20Discrete%20Time%20Systems%20Using%20a%20MLP%20with%20a%20New%20Sigmoidal%20Activation%20Function&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Skoundrianos,%20E%20N&rft.date=2004-09-01&rft.volume=41&rft.issue=1&rft.spage=19&rft.epage=36&rft.pages=19-36&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1023/B:JINT.0000049175.78893.2f&rft_dat=%3Cproquest_cross%3E914651056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881673075&rft_id=info:pmid/&rfr_iscdi=true