Statistical Pattern Modeling in Vision-Based Quality Control Systems
Machine vision technology improves productivity and quality management and provides a competitive advantage to industries that employ this technology. In this article, visual inspection and quality control theory are combined to develop a robust inspection system with manufacturing applications. The...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2003-07, Vol.37 (3), p.321-336 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 3 |
container_start_page | 321 |
container_title | Journal of intelligent & robotic systems |
container_volume | 37 |
creator | Armingol, Jose M Otamendi, Javier de la Escalera, Arturo Pastor, Jose M Rodriguez, Francisco J |
description | Machine vision technology improves productivity and quality management and provides a competitive advantage to industries that employ this technology. In this article, visual inspection and quality control theory are combined to develop a robust inspection system with manufacturing applications. The inspection process might be defined as the one used to determine if a given product fulfills a priori specifications, which are the quality standard. In the case of visual inspection, these specifications include the absence of defects, such as lack (or excess) of material, homogeneous visual aspect, required color, predetermined texture, etc. The characterization of the visual aspect of metallic surfaces is studied using quality control chars, which are a graphical technique used to compare on-line capabilities of a product with respect to these specifications. Original algorithms are proposed for implementation in automated visual inspection applications with on-line execution requirements. The proposed artificial vision method is a hybrid between the two usual methods of pattern comparison and theoretical decision. It incorporates quality control theory to statistically model the pattern for defect-free products. Specifically, individual control charts with 6-sigma limits are set so the inspection error is minimized. Experimental studies with metallic surfaces help demonstrate the efficacy and robustness of the proposed methodology. |
doi_str_mv | 10.1023/A:1025489610281 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_914651015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>914651015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-24a31e32752446b725f06a0809a491db44e61ca87b382ed5075662027f34ac8d3</originalsourceid><addsrcrecordid>eNp9z71LxDAcxvEgCp6ns2tw0Kn6y2sTt7O-wonKqWtJ21Ry5BJt0uH-ews6OTh9lw8PPAgdEzgnQNnF4nKK4ErLqYrsoBkRJSuAg95FM9CUFEC13EcHKa0BQCuhZ-h6lU12KbvWePxscrZDwI-xs96FD-wCfnfJxVBcmWQ7_DIa7_IWVzHkIXq82qZsN-kQ7fXGJ3v02zl6u715re6L5dPdQ7VYFi1VOheUG0Yso6WgnMumpKIHaUCBNlyTruHcStIaVTZMUdsJKIWUFGjZM25a1bE5OvvZ_Rzi12hTrjcutdZ7E2wcU60Jl4IAEZM8_VdSBdO85BM8-QPXcRzC9KJWikipBZPsG1PKZfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881669536</pqid></control><display><type>article</type><title>Statistical Pattern Modeling in Vision-Based Quality Control Systems</title><source>SpringerLink Journals</source><creator>Armingol, Jose M ; Otamendi, Javier ; de la Escalera, Arturo ; Pastor, Jose M ; Rodriguez, Francisco J</creator><creatorcontrib>Armingol, Jose M ; Otamendi, Javier ; de la Escalera, Arturo ; Pastor, Jose M ; Rodriguez, Francisco J</creatorcontrib><description>Machine vision technology improves productivity and quality management and provides a competitive advantage to industries that employ this technology. In this article, visual inspection and quality control theory are combined to develop a robust inspection system with manufacturing applications. The inspection process might be defined as the one used to determine if a given product fulfills a priori specifications, which are the quality standard. In the case of visual inspection, these specifications include the absence of defects, such as lack (or excess) of material, homogeneous visual aspect, required color, predetermined texture, etc. The characterization of the visual aspect of metallic surfaces is studied using quality control chars, which are a graphical technique used to compare on-line capabilities of a product with respect to these specifications. Original algorithms are proposed for implementation in automated visual inspection applications with on-line execution requirements. The proposed artificial vision method is a hybrid between the two usual methods of pattern comparison and theoretical decision. It incorporates quality control theory to statistically model the pattern for defect-free products. Specifically, individual control charts with 6-sigma limits are set so the inspection error is minimized. Experimental studies with metallic surfaces help demonstrate the efficacy and robustness of the proposed methodology.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1023/A:1025489610281</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Inspection ; Inspections ; Mathematical models ; On-line systems ; Quality control ; Specifications ; Texture ; Vision systems ; Visual aspects ; Visual inspection</subject><ispartof>Journal of intelligent & robotic systems, 2003-07, Vol.37 (3), p.321-336</ispartof><rights>Kluwer Academic Publishers 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-24a31e32752446b725f06a0809a491db44e61ca87b382ed5075662027f34ac8d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Armingol, Jose M</creatorcontrib><creatorcontrib>Otamendi, Javier</creatorcontrib><creatorcontrib>de la Escalera, Arturo</creatorcontrib><creatorcontrib>Pastor, Jose M</creatorcontrib><creatorcontrib>Rodriguez, Francisco J</creatorcontrib><title>Statistical Pattern Modeling in Vision-Based Quality Control Systems</title><title>Journal of intelligent & robotic systems</title><description>Machine vision technology improves productivity and quality management and provides a competitive advantage to industries that employ this technology. In this article, visual inspection and quality control theory are combined to develop a robust inspection system with manufacturing applications. The inspection process might be defined as the one used to determine if a given product fulfills a priori specifications, which are the quality standard. In the case of visual inspection, these specifications include the absence of defects, such as lack (or excess) of material, homogeneous visual aspect, required color, predetermined texture, etc. The characterization of the visual aspect of metallic surfaces is studied using quality control chars, which are a graphical technique used to compare on-line capabilities of a product with respect to these specifications. Original algorithms are proposed for implementation in automated visual inspection applications with on-line execution requirements. The proposed artificial vision method is a hybrid between the two usual methods of pattern comparison and theoretical decision. It incorporates quality control theory to statistically model the pattern for defect-free products. Specifically, individual control charts with 6-sigma limits are set so the inspection error is minimized. Experimental studies with metallic surfaces help demonstrate the efficacy and robustness of the proposed methodology.</description><subject>Inspection</subject><subject>Inspections</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>Quality control</subject><subject>Specifications</subject><subject>Texture</subject><subject>Vision systems</subject><subject>Visual aspects</subject><subject>Visual inspection</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9z71LxDAcxvEgCp6ns2tw0Kn6y2sTt7O-wonKqWtJ21Ry5BJt0uH-ews6OTh9lw8PPAgdEzgnQNnF4nKK4ErLqYrsoBkRJSuAg95FM9CUFEC13EcHKa0BQCuhZ-h6lU12KbvWePxscrZDwI-xs96FD-wCfnfJxVBcmWQ7_DIa7_IWVzHkIXq82qZsN-kQ7fXGJ3v02zl6u715re6L5dPdQ7VYFi1VOheUG0Yso6WgnMumpKIHaUCBNlyTruHcStIaVTZMUdsJKIWUFGjZM25a1bE5OvvZ_Rzi12hTrjcutdZ7E2wcU60Jl4IAEZM8_VdSBdO85BM8-QPXcRzC9KJWikipBZPsG1PKZfQ</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Armingol, Jose M</creator><creator>Otamendi, Javier</creator><creator>de la Escalera, Arturo</creator><creator>Pastor, Jose M</creator><creator>Rodriguez, Francisco J</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20030701</creationdate><title>Statistical Pattern Modeling in Vision-Based Quality Control Systems</title><author>Armingol, Jose M ; Otamendi, Javier ; de la Escalera, Arturo ; Pastor, Jose M ; Rodriguez, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-24a31e32752446b725f06a0809a491db44e61ca87b382ed5075662027f34ac8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Inspection</topic><topic>Inspections</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>Quality control</topic><topic>Specifications</topic><topic>Texture</topic><topic>Vision systems</topic><topic>Visual aspects</topic><topic>Visual inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armingol, Jose M</creatorcontrib><creatorcontrib>Otamendi, Javier</creatorcontrib><creatorcontrib>de la Escalera, Arturo</creatorcontrib><creatorcontrib>Pastor, Jose M</creatorcontrib><creatorcontrib>Rodriguez, Francisco J</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armingol, Jose M</au><au>Otamendi, Javier</au><au>de la Escalera, Arturo</au><au>Pastor, Jose M</au><au>Rodriguez, Francisco J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Pattern Modeling in Vision-Based Quality Control Systems</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>37</volume><issue>3</issue><spage>321</spage><epage>336</epage><pages>321-336</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Machine vision technology improves productivity and quality management and provides a competitive advantage to industries that employ this technology. In this article, visual inspection and quality control theory are combined to develop a robust inspection system with manufacturing applications. The inspection process might be defined as the one used to determine if a given product fulfills a priori specifications, which are the quality standard. In the case of visual inspection, these specifications include the absence of defects, such as lack (or excess) of material, homogeneous visual aspect, required color, predetermined texture, etc. The characterization of the visual aspect of metallic surfaces is studied using quality control chars, which are a graphical technique used to compare on-line capabilities of a product with respect to these specifications. Original algorithms are proposed for implementation in automated visual inspection applications with on-line execution requirements. The proposed artificial vision method is a hybrid between the two usual methods of pattern comparison and theoretical decision. It incorporates quality control theory to statistically model the pattern for defect-free products. Specifically, individual control charts with 6-sigma limits are set so the inspection error is minimized. Experimental studies with metallic surfaces help demonstrate the efficacy and robustness of the proposed methodology.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1025489610281</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2003-07, Vol.37 (3), p.321-336 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_miscellaneous_914651015 |
source | SpringerLink Journals |
subjects | Inspection Inspections Mathematical models On-line systems Quality control Specifications Texture Vision systems Visual aspects Visual inspection |
title | Statistical Pattern Modeling in Vision-Based Quality Control Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Pattern%20Modeling%20in%20Vision-Based%20Quality%20Control%20Systems&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Armingol,%20Jose%20M&rft.date=2003-07-01&rft.volume=37&rft.issue=3&rft.spage=321&rft.epage=336&rft.pages=321-336&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1023/A:1025489610281&rft_dat=%3Cproquest%3E914651015%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881669536&rft_id=info:pmid/&rfr_iscdi=true |