Adaptive call admission control under quality of service constraints: a reinforcement learning solution
We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2000-02, Vol.18 (2), p.209-221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 2 |
container_start_page | 209 |
container_title | IEEE journal on selected areas in communications |
container_volume | 18 |
creator | Hui Tong Brown, T.X. |
description | We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network. |
doi_str_mv | 10.1109/49.824799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914650462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>824799</ieee_id><sourcerecordid>2434271911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</originalsourceid><addsrcrecordid>eNqF0T1rHDEQBmARbMjlkiJtKpEiJsXa-lp9pDsOxw4Y3Dj1otXOGhmddCdpD-7fe487UriIqynm4R1mBqGvlFxTSsyNMNeaCWXMB7SgbasbQoi-QAuiOG-0ovIj-lTKCyFUCM0W6Hk12G31e8DOhoDtsPGl-BSxS7HmFPAUB8h4N9ng6wGnERfIe-_gCErN1sdafmGLM_g4puxgA7HiADZHH59xSWGqc95ndDnaUODLuS7R39-3T-v75uHx7s969dA4LlVtrKLGDr00RslRE8lGEMBBcAcaBmvBjsb1ggx9q3rFmabEaRBiHNwALfR8ia5OuducdhOU2s0LOQjBRkhT6QwVsiVCsln--K9kmjGuuHkfKiaFme-7RN_fwJc05Tiv22ndEk6lPo79eUIup1IyjN02-43Nh46S7vjCTpju9MLZfjtZDwD_3Ln5ChWvmJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885031682</pqid></control><display><type>article</type><title>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</title><source>IEEE Electronic Library (IEL)</source><creator>Hui Tong ; Brown, T.X.</creator><creatorcontrib>Hui Tong ; Brown, T.X.</creatorcontrib><description>We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/49.824799</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive control systems ; Admission control ; Algorithms ; Call admission control ; Communication system control ; Communication system traffic control ; Intserv networks ; Learning ; Mathematical models ; Networks ; Programmable control ; Quality of service ; Reinforcement ; Revenues ; Routing ; Studies</subject><ispartof>IEEE journal on selected areas in communications, 2000-02, Vol.18 (2), p.209-221</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</citedby><cites>FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/824799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/824799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hui Tong</creatorcontrib><creatorcontrib>Brown, T.X.</creatorcontrib><title>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Admission control</subject><subject>Algorithms</subject><subject>Call admission control</subject><subject>Communication system control</subject><subject>Communication system traffic control</subject><subject>Intserv networks</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Programmable control</subject><subject>Quality of service</subject><subject>Reinforcement</subject><subject>Revenues</subject><subject>Routing</subject><subject>Studies</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1rHDEQBmARbMjlkiJtKpEiJsXa-lp9pDsOxw4Y3Dj1otXOGhmddCdpD-7fe487UriIqynm4R1mBqGvlFxTSsyNMNeaCWXMB7SgbasbQoi-QAuiOG-0ovIj-lTKCyFUCM0W6Hk12G31e8DOhoDtsPGl-BSxS7HmFPAUB8h4N9ng6wGnERfIe-_gCErN1sdafmGLM_g4puxgA7HiADZHH59xSWGqc95ndDnaUODLuS7R39-3T-v75uHx7s969dA4LlVtrKLGDr00RslRE8lGEMBBcAcaBmvBjsb1ggx9q3rFmabEaRBiHNwALfR8ia5OuducdhOU2s0LOQjBRkhT6QwVsiVCsln--K9kmjGuuHkfKiaFme-7RN_fwJc05Tiv22ndEk6lPo79eUIup1IyjN02-43Nh46S7vjCTpju9MLZfjtZDwD_3Ln5ChWvmJk</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Hui Tong</creator><creator>Brown, T.X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000201</creationdate><title>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</title><author>Hui Tong ; Brown, T.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Admission control</topic><topic>Algorithms</topic><topic>Call admission control</topic><topic>Communication system control</topic><topic>Communication system traffic control</topic><topic>Intserv networks</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Programmable control</topic><topic>Quality of service</topic><topic>Reinforcement</topic><topic>Revenues</topic><topic>Routing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui Tong</creatorcontrib><creatorcontrib>Brown, T.X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hui Tong</au><au>Brown, T.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2000-02-01</date><risdate>2000</risdate><volume>18</volume><issue>2</issue><spage>209</spage><epage>221</epage><pages>209-221</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/49.824799</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2000-02, Vol.18 (2), p.209-221 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_miscellaneous_914650462 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive control systems Admission control Algorithms Call admission control Communication system control Communication system traffic control Intserv networks Learning Mathematical models Networks Programmable control Quality of service Reinforcement Revenues Routing Studies |
title | Adaptive call admission control under quality of service constraints: a reinforcement learning solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20call%20admission%20control%20under%20quality%20of%20service%20constraints:%20a%20reinforcement%20learning%20solution&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Hui%20Tong&rft.date=2000-02-01&rft.volume=18&rft.issue=2&rft.spage=209&rft.epage=221&rft.pages=209-221&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/49.824799&rft_dat=%3Cproquest_RIE%3E2434271911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885031682&rft_id=info:pmid/&rft_ieee_id=824799&rfr_iscdi=true |