Adaptive call admission control under quality of service constraints: a reinforcement learning solution

We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2000-02, Vol.18 (2), p.209-221
Hauptverfasser: Hui Tong, Brown, T.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 2
container_start_page 209
container_title IEEE journal on selected areas in communications
container_volume 18
creator Hui Tong
Brown, T.X.
description We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.
doi_str_mv 10.1109/49.824799
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914650462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>824799</ieee_id><sourcerecordid>2434271911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</originalsourceid><addsrcrecordid>eNqF0T1rHDEQBmARbMjlkiJtKpEiJsXa-lp9pDsOxw4Y3Dj1otXOGhmddCdpD-7fe487UriIqynm4R1mBqGvlFxTSsyNMNeaCWXMB7SgbasbQoi-QAuiOG-0ovIj-lTKCyFUCM0W6Hk12G31e8DOhoDtsPGl-BSxS7HmFPAUB8h4N9ng6wGnERfIe-_gCErN1sdafmGLM_g4puxgA7HiADZHH59xSWGqc95ndDnaUODLuS7R39-3T-v75uHx7s969dA4LlVtrKLGDr00RslRE8lGEMBBcAcaBmvBjsb1ggx9q3rFmabEaRBiHNwALfR8ia5OuducdhOU2s0LOQjBRkhT6QwVsiVCsln--K9kmjGuuHkfKiaFme-7RN_fwJc05Tiv22ndEk6lPo79eUIup1IyjN02-43Nh46S7vjCTpju9MLZfjtZDwD_3Ln5ChWvmJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885031682</pqid></control><display><type>article</type><title>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</title><source>IEEE Electronic Library (IEL)</source><creator>Hui Tong ; Brown, T.X.</creator><creatorcontrib>Hui Tong ; Brown, T.X.</creatorcontrib><description>We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/49.824799</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive control systems ; Admission control ; Algorithms ; Call admission control ; Communication system control ; Communication system traffic control ; Intserv networks ; Learning ; Mathematical models ; Networks ; Programmable control ; Quality of service ; Reinforcement ; Revenues ; Routing ; Studies</subject><ispartof>IEEE journal on selected areas in communications, 2000-02, Vol.18 (2), p.209-221</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</citedby><cites>FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/824799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/824799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hui Tong</creatorcontrib><creatorcontrib>Brown, T.X.</creatorcontrib><title>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Admission control</subject><subject>Algorithms</subject><subject>Call admission control</subject><subject>Communication system control</subject><subject>Communication system traffic control</subject><subject>Intserv networks</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Programmable control</subject><subject>Quality of service</subject><subject>Reinforcement</subject><subject>Revenues</subject><subject>Routing</subject><subject>Studies</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1rHDEQBmARbMjlkiJtKpEiJsXa-lp9pDsOxw4Y3Dj1otXOGhmddCdpD-7fe487UriIqynm4R1mBqGvlFxTSsyNMNeaCWXMB7SgbasbQoi-QAuiOG-0ovIj-lTKCyFUCM0W6Hk12G31e8DOhoDtsPGl-BSxS7HmFPAUB8h4N9ng6wGnERfIe-_gCErN1sdafmGLM_g4puxgA7HiADZHH59xSWGqc95ndDnaUODLuS7R39-3T-v75uHx7s969dA4LlVtrKLGDr00RslRE8lGEMBBcAcaBmvBjsb1ggx9q3rFmabEaRBiHNwALfR8ia5OuducdhOU2s0LOQjBRkhT6QwVsiVCsln--K9kmjGuuHkfKiaFme-7RN_fwJc05Tiv22ndEk6lPo79eUIup1IyjN02-43Nh46S7vjCTpju9MLZfjtZDwD_3Ln5ChWvmJk</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Hui Tong</creator><creator>Brown, T.X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000201</creationdate><title>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</title><author>Hui Tong ; Brown, T.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a719adb69976f8062fe4e3e43ce8edaaeaf9cb40db57b732810c8e44fdcde5eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Admission control</topic><topic>Algorithms</topic><topic>Call admission control</topic><topic>Communication system control</topic><topic>Communication system traffic control</topic><topic>Intserv networks</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Programmable control</topic><topic>Quality of service</topic><topic>Reinforcement</topic><topic>Revenues</topic><topic>Routing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui Tong</creatorcontrib><creatorcontrib>Brown, T.X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hui Tong</au><au>Brown, T.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive call admission control under quality of service constraints: a reinforcement learning solution</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2000-02-01</date><risdate>2000</risdate><volume>18</volume><issue>2</issue><spage>209</spage><epage>221</epage><pages>209-221</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/49.824799</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2000-02, Vol.18 (2), p.209-221
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_miscellaneous_914650462
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive control systems
Admission control
Algorithms
Call admission control
Communication system control
Communication system traffic control
Intserv networks
Learning
Mathematical models
Networks
Programmable control
Quality of service
Reinforcement
Revenues
Routing
Studies
title Adaptive call admission control under quality of service constraints: a reinforcement learning solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20call%20admission%20control%20under%20quality%20of%20service%20constraints:%20a%20reinforcement%20learning%20solution&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Hui%20Tong&rft.date=2000-02-01&rft.volume=18&rft.issue=2&rft.spage=209&rft.epage=221&rft.pages=209-221&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/49.824799&rft_dat=%3Cproquest_RIE%3E2434271911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885031682&rft_id=info:pmid/&rft_ieee_id=824799&rfr_iscdi=true