Tunneling into interface states as reliability monitor for ultrathin oxides
This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband vo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2000-12, Vol.47 (12), p.2358-2365 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2365 |
---|---|
container_issue | 12 |
container_start_page | 2358 |
container_title | IEEE transactions on electron devices |
container_volume | 47 |
creator | Ghetti, A. Sangiorgi, E. Bude, J. Sorsch, T.W. Weber, G. |
description | This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable. |
doi_str_mv | 10.1109/16.887022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914643429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887022</ieee_id><sourcerecordid>2435109051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</originalsourceid><addsrcrecordid>eNp90DtPwzAQAGALgUR5DKxMEQOIIcWv2M6IKl6iEkuZLce5gKvUKbYj0X-Pq1YMDAw-63SfTneH0AXBU0JwfUfEVCmJKT1AE1JVsqwFF4dogjFRZc0UO0YnMS5zKjinE_S6GL2H3vmPwvk0bAOEzlgoYjIJYmFiEXLdNK53aVOsBu_SEIouv7FPwaRP54vh27UQz9BRZ_oI5_v_FL0_Pixmz-X87elldj8vLWMi5YkwiKamppEcN0AUI0yqClrMhbRCKtVJ22JFBFhe245hZilvJVSthbYz7BTd7Pquw_A1Qkx65aKFvjcehjHqmnDBGad1ltf_SqokxYSJDK_-wOUwBp-30EpVlApGt-h2h2wYYgzQ6XVwKxM2mmC9vb4mQu-un-3lzjoA-HX74g-5mH8V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885226326</pqid></control><display><type>article</type><title>Tunneling into interface states as reliability monitor for ultrathin oxides</title><source>IEEE Electronic Library (IEL)</source><creator>Ghetti, A. ; Sangiorgi, E. ; Bude, J. ; Sorsch, T.W. ; Weber, G.</creator><creatorcontrib>Ghetti, A. ; Sangiorgi, E. ; Bude, J. ; Sorsch, T.W. ; Weber, G.</creatorcontrib><description>This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.887022</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electric potential ; Gates ; MIS devices ; Monitors ; Oxides ; Simulation ; Stresses ; Tunneling ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2000-12, Vol.47 (12), p.2358-2365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</citedby><cites>FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/887022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghetti, A.</creatorcontrib><creatorcontrib>Sangiorgi, E.</creatorcontrib><creatorcontrib>Bude, J.</creatorcontrib><creatorcontrib>Sorsch, T.W.</creatorcontrib><creatorcontrib>Weber, G.</creatorcontrib><title>Tunneling into interface states as reliability monitor for ultrathin oxides</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.</description><subject>Electric potential</subject><subject>Gates</subject><subject>MIS devices</subject><subject>Monitors</subject><subject>Oxides</subject><subject>Simulation</subject><subject>Stresses</subject><subject>Tunneling</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtPwzAQAGALgUR5DKxMEQOIIcWv2M6IKl6iEkuZLce5gKvUKbYj0X-Pq1YMDAw-63SfTneH0AXBU0JwfUfEVCmJKT1AE1JVsqwFF4dogjFRZc0UO0YnMS5zKjinE_S6GL2H3vmPwvk0bAOEzlgoYjIJYmFiEXLdNK53aVOsBu_SEIouv7FPwaRP54vh27UQz9BRZ_oI5_v_FL0_Pixmz-X87elldj8vLWMi5YkwiKamppEcN0AUI0yqClrMhbRCKtVJ22JFBFhe245hZilvJVSthbYz7BTd7Pquw_A1Qkx65aKFvjcehjHqmnDBGad1ltf_SqokxYSJDK_-wOUwBp-30EpVlApGt-h2h2wYYgzQ6XVwKxM2mmC9vb4mQu-un-3lzjoA-HX74g-5mH8V</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Ghetti, A.</creator><creator>Sangiorgi, E.</creator><creator>Bude, J.</creator><creator>Sorsch, T.W.</creator><creator>Weber, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001201</creationdate><title>Tunneling into interface states as reliability monitor for ultrathin oxides</title><author>Ghetti, A. ; Sangiorgi, E. ; Bude, J. ; Sorsch, T.W. ; Weber, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Electric potential</topic><topic>Gates</topic><topic>MIS devices</topic><topic>Monitors</topic><topic>Oxides</topic><topic>Simulation</topic><topic>Stresses</topic><topic>Tunneling</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghetti, A.</creatorcontrib><creatorcontrib>Sangiorgi, E.</creatorcontrib><creatorcontrib>Bude, J.</creatorcontrib><creatorcontrib>Sorsch, T.W.</creatorcontrib><creatorcontrib>Weber, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghetti, A.</au><au>Sangiorgi, E.</au><au>Bude, J.</au><au>Sorsch, T.W.</au><au>Weber, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling into interface states as reliability monitor for ultrathin oxides</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-12-01</date><risdate>2000</risdate><volume>47</volume><issue>12</issue><spage>2358</spage><epage>2365</epage><pages>2358-2365</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.887022</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2000-12, Vol.47 (12), p.2358-2365 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_914643429 |
source | IEEE Electronic Library (IEL) |
subjects | Electric potential Gates MIS devices Monitors Oxides Simulation Stresses Tunneling Voltage |
title | Tunneling into interface states as reliability monitor for ultrathin oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20into%20interface%20states%20as%20reliability%20monitor%20for%20ultrathin%20oxides&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ghetti,%20A.&rft.date=2000-12-01&rft.volume=47&rft.issue=12&rft.spage=2358&rft.epage=2365&rft.pages=2358-2365&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.887022&rft_dat=%3Cproquest_RIE%3E2435109051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885226326&rft_id=info:pmid/&rft_ieee_id=887022&rfr_iscdi=true |