Tunneling into interface states as reliability monitor for ultrathin oxides

This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2000-12, Vol.47 (12), p.2358-2365
Hauptverfasser: Ghetti, A., Sangiorgi, E., Bude, J., Sorsch, T.W., Weber, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2365
container_issue 12
container_start_page 2358
container_title IEEE transactions on electron devices
container_volume 47
creator Ghetti, A.
Sangiorgi, E.
Bude, J.
Sorsch, T.W.
Weber, G.
description This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.
doi_str_mv 10.1109/16.887022
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914643429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887022</ieee_id><sourcerecordid>2435109051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</originalsourceid><addsrcrecordid>eNp90DtPwzAQAGALgUR5DKxMEQOIIcWv2M6IKl6iEkuZLce5gKvUKbYj0X-Pq1YMDAw-63SfTneH0AXBU0JwfUfEVCmJKT1AE1JVsqwFF4dogjFRZc0UO0YnMS5zKjinE_S6GL2H3vmPwvk0bAOEzlgoYjIJYmFiEXLdNK53aVOsBu_SEIouv7FPwaRP54vh27UQz9BRZ_oI5_v_FL0_Pixmz-X87elldj8vLWMi5YkwiKamppEcN0AUI0yqClrMhbRCKtVJ22JFBFhe245hZilvJVSthbYz7BTd7Pquw_A1Qkx65aKFvjcehjHqmnDBGad1ltf_SqokxYSJDK_-wOUwBp-30EpVlApGt-h2h2wYYgzQ6XVwKxM2mmC9vb4mQu-un-3lzjoA-HX74g-5mH8V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885226326</pqid></control><display><type>article</type><title>Tunneling into interface states as reliability monitor for ultrathin oxides</title><source>IEEE Electronic Library (IEL)</source><creator>Ghetti, A. ; Sangiorgi, E. ; Bude, J. ; Sorsch, T.W. ; Weber, G.</creator><creatorcontrib>Ghetti, A. ; Sangiorgi, E. ; Bude, J. ; Sorsch, T.W. ; Weber, G.</creatorcontrib><description>This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.887022</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electric potential ; Gates ; MIS devices ; Monitors ; Oxides ; Simulation ; Stresses ; Tunneling ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2000-12, Vol.47 (12), p.2358-2365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</citedby><cites>FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/887022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghetti, A.</creatorcontrib><creatorcontrib>Sangiorgi, E.</creatorcontrib><creatorcontrib>Bude, J.</creatorcontrib><creatorcontrib>Sorsch, T.W.</creatorcontrib><creatorcontrib>Weber, G.</creatorcontrib><title>Tunneling into interface states as reliability monitor for ultrathin oxides</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.</description><subject>Electric potential</subject><subject>Gates</subject><subject>MIS devices</subject><subject>Monitors</subject><subject>Oxides</subject><subject>Simulation</subject><subject>Stresses</subject><subject>Tunneling</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtPwzAQAGALgUR5DKxMEQOIIcWv2M6IKl6iEkuZLce5gKvUKbYj0X-Pq1YMDAw-63SfTneH0AXBU0JwfUfEVCmJKT1AE1JVsqwFF4dogjFRZc0UO0YnMS5zKjinE_S6GL2H3vmPwvk0bAOEzlgoYjIJYmFiEXLdNK53aVOsBu_SEIouv7FPwaRP54vh27UQz9BRZ_oI5_v_FL0_Pixmz-X87elldj8vLWMi5YkwiKamppEcN0AUI0yqClrMhbRCKtVJ22JFBFhe245hZilvJVSthbYz7BTd7Pquw_A1Qkx65aKFvjcehjHqmnDBGad1ltf_SqokxYSJDK_-wOUwBp-30EpVlApGt-h2h2wYYgzQ6XVwKxM2mmC9vb4mQu-un-3lzjoA-HX74g-5mH8V</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Ghetti, A.</creator><creator>Sangiorgi, E.</creator><creator>Bude, J.</creator><creator>Sorsch, T.W.</creator><creator>Weber, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001201</creationdate><title>Tunneling into interface states as reliability monitor for ultrathin oxides</title><author>Ghetti, A. ; Sangiorgi, E. ; Bude, J. ; Sorsch, T.W. ; Weber, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-960e6b92ab740be18313785ed0467c6788f7cd0816ec49cf303c24d7e5dcedfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Electric potential</topic><topic>Gates</topic><topic>MIS devices</topic><topic>Monitors</topic><topic>Oxides</topic><topic>Simulation</topic><topic>Stresses</topic><topic>Tunneling</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghetti, A.</creatorcontrib><creatorcontrib>Sangiorgi, E.</creatorcontrib><creatorcontrib>Bude, J.</creatorcontrib><creatorcontrib>Sorsch, T.W.</creatorcontrib><creatorcontrib>Weber, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghetti, A.</au><au>Sangiorgi, E.</au><au>Bude, J.</au><au>Sorsch, T.W.</au><au>Weber, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling into interface states as reliability monitor for ultrathin oxides</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-12-01</date><risdate>2000</risdate><volume>47</volume><issue>12</issue><spage>2358</spage><epage>2365</epage><pages>2358-2365</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.887022</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2000-12, Vol.47 (12), p.2358-2365
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_914643429
source IEEE Electronic Library (IEL)
subjects Electric potential
Gates
MIS devices
Monitors
Oxides
Simulation
Stresses
Tunneling
Voltage
title Tunneling into interface states as reliability monitor for ultrathin oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20into%20interface%20states%20as%20reliability%20monitor%20for%20ultrathin%20oxides&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ghetti,%20A.&rft.date=2000-12-01&rft.volume=47&rft.issue=12&rft.spage=2358&rft.epage=2365&rft.pages=2358-2365&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.887022&rft_dat=%3Cproquest_RIE%3E2435109051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885226326&rft_id=info:pmid/&rft_ieee_id=887022&rfr_iscdi=true