Numerical modeling of energy balance equations in quantum well Al sub(x)Ga sub(1-x)As/GaAs p-i-n photodiodes

The energy balance equations coupled with drift diffusion transport equations in heterojunction semiconductor devices are solved modeling hot electron effects in single quantum well p-i-n photodiodes. The transports across the heterojunction boundary and through quantum wells are modeled by thermion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2000-01, Vol.47 (5), p.915-921
Hauptverfasser: Fardi, Hamid Z, Winston, David W, Hayes, Russell E, Hanna, Mark C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue 5
container_start_page 915
container_title IEEE transactions on electron devices
container_volume 47
creator Fardi, Hamid Z
Winston, David W
Hayes, Russell E
Hanna, Mark C
description The energy balance equations coupled with drift diffusion transport equations in heterojunction semiconductor devices are solved modeling hot electron effects in single quantum well p-i-n photodiodes. The transports across the heterojunction boundary and through quantum wells are modeled by thermionic emission theory. The simulation and experimental current-voltage characteristics of a single p-i-n GaAs/Al sub(x)Ga sub(1-x)As quantum well agree over a wide range of current and voltage. The GaAs/Al sub(x)Ga sub(1-x)As p-i-n structures with multi quantum wells are simulated and the dark current-voltage characteristics, short circuit current, and open circuit voltage results are compared with the available experimental data. In agreement with the experimental data, simulated results show that by adding GaAs quantum wells to the conventional cell made of wider bandgap Al sub(x)Ga sub(1-x)As, improve short circuit current, but with the loss of the voltage of the host cell. In the limit of radiative recombination, the maximum power point of an Al sub(0.35)Ga sub(0.65)As/GaAs p-i-n photodiode with 30-quantum-well periods is higher than the maximum power point of similar conventional bulk p-i-n cells made out of either host Al sub(0.35)Ga sub(0.65)As or bulk GaAs material.
doi_str_mv 10.1109/16.841221
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_914643076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>914643076</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-5228fb3cc9071e384306672a7c1b64d1e35350d65d0105a8f3a7d16d54940c4d3</originalsourceid><addsrcrecordid>eNp9jj1PwzAURT2ARCkM_ANPQAe3_k4yRhUNSBUs3SvHdoqRY6d1Isq_xwJmpnfv1dHRA-CO4CUhuFoRuSw5oZRcgBnGpEQVK9kVuE7pI1fJOZ0B_zr19uS08rCPxnoXDjB20AZ7OnzBVnkVtIX2OKnRxZCgCzDnME49_LTew9rDNLWP50WjfgJB50WdVo2qExyQQwEO73GMxmV5ugGXnfLJ3v7dOdhtnnbrZ7R9a17W9RYNkkkkKC27lmld4YJYVnKGpSyoKjRpJTd5EkxgI4XBBAtVdkwVhkgjeMWx5obNwcOvdjjF42TTuO9d0vlbFWyc0r4iXGZpITN5_y9JC4kFy_A3CW9kFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27605364</pqid></control><display><type>article</type><title>Numerical modeling of energy balance equations in quantum well Al sub(x)Ga sub(1-x)As/GaAs p-i-n photodiodes</title><source>IEEE Electronic Library (IEL)</source><creator>Fardi, Hamid Z ; Winston, David W ; Hayes, Russell E ; Hanna, Mark C</creator><creatorcontrib>Fardi, Hamid Z ; Winston, David W ; Hayes, Russell E ; Hanna, Mark C</creatorcontrib><description>The energy balance equations coupled with drift diffusion transport equations in heterojunction semiconductor devices are solved modeling hot electron effects in single quantum well p-i-n photodiodes. The transports across the heterojunction boundary and through quantum wells are modeled by thermionic emission theory. The simulation and experimental current-voltage characteristics of a single p-i-n GaAs/Al sub(x)Ga sub(1-x)As quantum well agree over a wide range of current and voltage. The GaAs/Al sub(x)Ga sub(1-x)As p-i-n structures with multi quantum wells are simulated and the dark current-voltage characteristics, short circuit current, and open circuit voltage results are compared with the available experimental data. In agreement with the experimental data, simulated results show that by adding GaAs quantum wells to the conventional cell made of wider bandgap Al sub(x)Ga sub(1-x)As, improve short circuit current, but with the loss of the voltage of the host cell. In the limit of radiative recombination, the maximum power point of an Al sub(0.35)Ga sub(0.65)As/GaAs p-i-n photodiode with 30-quantum-well periods is higher than the maximum power point of similar conventional bulk p-i-n cells made out of either host Al sub(0.35)Ga sub(0.65)As or bulk GaAs material.</description><identifier>ISSN: 0018-9383</identifier><identifier>DOI: 10.1109/16.841221</identifier><language>eng</language><subject>Electric potential ; Gallium arsenide ; Gallium arsenides ; Mathematical models ; Maximum power ; Photodiodes ; Quantum wells ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2000-01, Vol.47 (5), p.915-921</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fardi, Hamid Z</creatorcontrib><creatorcontrib>Winston, David W</creatorcontrib><creatorcontrib>Hayes, Russell E</creatorcontrib><creatorcontrib>Hanna, Mark C</creatorcontrib><title>Numerical modeling of energy balance equations in quantum well Al sub(x)Ga sub(1-x)As/GaAs p-i-n photodiodes</title><title>IEEE transactions on electron devices</title><description>The energy balance equations coupled with drift diffusion transport equations in heterojunction semiconductor devices are solved modeling hot electron effects in single quantum well p-i-n photodiodes. The transports across the heterojunction boundary and through quantum wells are modeled by thermionic emission theory. The simulation and experimental current-voltage characteristics of a single p-i-n GaAs/Al sub(x)Ga sub(1-x)As quantum well agree over a wide range of current and voltage. The GaAs/Al sub(x)Ga sub(1-x)As p-i-n structures with multi quantum wells are simulated and the dark current-voltage characteristics, short circuit current, and open circuit voltage results are compared with the available experimental data. In agreement with the experimental data, simulated results show that by adding GaAs quantum wells to the conventional cell made of wider bandgap Al sub(x)Ga sub(1-x)As, improve short circuit current, but with the loss of the voltage of the host cell. In the limit of radiative recombination, the maximum power point of an Al sub(0.35)Ga sub(0.65)As/GaAs p-i-n photodiode with 30-quantum-well periods is higher than the maximum power point of similar conventional bulk p-i-n cells made out of either host Al sub(0.35)Ga sub(0.65)As or bulk GaAs material.</description><subject>Electric potential</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Photodiodes</subject><subject>Quantum wells</subject><subject>Voltage</subject><issn>0018-9383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9jj1PwzAURT2ARCkM_ANPQAe3_k4yRhUNSBUs3SvHdoqRY6d1Isq_xwJmpnfv1dHRA-CO4CUhuFoRuSw5oZRcgBnGpEQVK9kVuE7pI1fJOZ0B_zr19uS08rCPxnoXDjB20AZ7OnzBVnkVtIX2OKnRxZCgCzDnME49_LTew9rDNLWP50WjfgJB50WdVo2qExyQQwEO73GMxmV5ugGXnfLJ3v7dOdhtnnbrZ7R9a17W9RYNkkkkKC27lmld4YJYVnKGpSyoKjRpJTd5EkxgI4XBBAtVdkwVhkgjeMWx5obNwcOvdjjF42TTuO9d0vlbFWyc0r4iXGZpITN5_y9JC4kFy_A3CW9kFg</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Fardi, Hamid Z</creator><creator>Winston, David W</creator><creator>Hayes, Russell E</creator><creator>Hanna, Mark C</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20000101</creationdate><title>Numerical modeling of energy balance equations in quantum well Al sub(x)Ga sub(1-x)As/GaAs p-i-n photodiodes</title><author>Fardi, Hamid Z ; Winston, David W ; Hayes, Russell E ; Hanna, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-5228fb3cc9071e384306672a7c1b64d1e35350d65d0105a8f3a7d16d54940c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Electric potential</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Photodiodes</topic><topic>Quantum wells</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fardi, Hamid Z</creatorcontrib><creatorcontrib>Winston, David W</creatorcontrib><creatorcontrib>Hayes, Russell E</creatorcontrib><creatorcontrib>Hanna, Mark C</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fardi, Hamid Z</au><au>Winston, David W</au><au>Hayes, Russell E</au><au>Hanna, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of energy balance equations in quantum well Al sub(x)Ga sub(1-x)As/GaAs p-i-n photodiodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>47</volume><issue>5</issue><spage>915</spage><epage>921</epage><pages>915-921</pages><issn>0018-9383</issn><abstract>The energy balance equations coupled with drift diffusion transport equations in heterojunction semiconductor devices are solved modeling hot electron effects in single quantum well p-i-n photodiodes. The transports across the heterojunction boundary and through quantum wells are modeled by thermionic emission theory. The simulation and experimental current-voltage characteristics of a single p-i-n GaAs/Al sub(x)Ga sub(1-x)As quantum well agree over a wide range of current and voltage. The GaAs/Al sub(x)Ga sub(1-x)As p-i-n structures with multi quantum wells are simulated and the dark current-voltage characteristics, short circuit current, and open circuit voltage results are compared with the available experimental data. In agreement with the experimental data, simulated results show that by adding GaAs quantum wells to the conventional cell made of wider bandgap Al sub(x)Ga sub(1-x)As, improve short circuit current, but with the loss of the voltage of the host cell. In the limit of radiative recombination, the maximum power point of an Al sub(0.35)Ga sub(0.65)As/GaAs p-i-n photodiode with 30-quantum-well periods is higher than the maximum power point of similar conventional bulk p-i-n cells made out of either host Al sub(0.35)Ga sub(0.65)As or bulk GaAs material.</abstract><doi>10.1109/16.841221</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2000-01, Vol.47 (5), p.915-921
issn 0018-9383
language eng
recordid cdi_proquest_miscellaneous_914643076
source IEEE Electronic Library (IEL)
subjects Electric potential
Gallium arsenide
Gallium arsenides
Mathematical models
Maximum power
Photodiodes
Quantum wells
Voltage
title Numerical modeling of energy balance equations in quantum well Al sub(x)Ga sub(1-x)As/GaAs p-i-n photodiodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20energy%20balance%20equations%20in%20quantum%20well%20Al%20sub(x)Ga%20sub(1-x)As/GaAs%20p-i-n%20photodiodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Fardi,%20Hamid%20Z&rft.date=2000-01-01&rft.volume=47&rft.issue=5&rft.spage=915&rft.epage=921&rft.pages=915-921&rft.issn=0018-9383&rft_id=info:doi/10.1109/16.841221&rft_dat=%3Cproquest%3E914643076%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27605364&rft_id=info:pmid/&rfr_iscdi=true