On the Jensen-Shannon divergence and variational distance
We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon divergence, and the well known L/sub 1/ metric. We show that several important results and constructions in computational complexity under the L/sub 1/ me...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2005-09, Vol.51 (9), p.3333-3336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3336 |
---|---|
container_issue | 9 |
container_start_page | 3333 |
container_title | IEEE transactions on information theory |
container_volume | 51 |
creator | TSAI, Shi-Chun TZENG, Wen-Guey WU, Hsin-Lung |
description | We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon divergence, and the well known L/sub 1/ metric. We show that several important results and constructions in computational complexity under the L/sub 1/ metric carry over to the new metric, such as Yao's next-bit predictor, the existence of extractors, the leftover hash lemma, and the construction of expander graph based extractor. Finally, we show that the useful parity lemma in studying pseudorandomness does not hold in the new metric. |
doi_str_mv | 10.1109/TIT.2005.853308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914642534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1499065</ieee_id><sourcerecordid>28068266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-fd5b1500c2e9b55089ef9ffbbb51ec1db32155e1e2e650f026603627a749376c3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKdnD16KoJ66fUmTtDnK8MdksIPzHNLui-vo0pl0A_97MzoQPHgK4X2-N18eQq4pjCgFNV5MFyMGIEaFyDIoTsiACpGnSgp-SgYAtEgV58U5uQhhHa9cUDYgau6SboXJG7qALn1fGedalyzrPfpPdBUmxi2TvfG16erWmSZGoTMxuCRn1jQBr47nkHw8Py0mr-ls_jKdPM7SijPWpXYpSioAKoaqFAIKhVZZW5aloFjRZZmxuCdSZCgFWGBSQiZZbnKuslxW2ZA89L1b337tMHR6U4cKm8Y4bHdBK8olZyLjkbz_l2QFyCL2R_D2D7hudz5-LmiqhAIa_UVo3EOVb0PwaPXW1xvjvzUFfTCuo3F9MK5743Hi7lhrQmUa66OmOvyO5SAKpg7P3_RcjYi_MVcKpMh-AO8yhxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195901308</pqid></control><display><type>article</type><title>On the Jensen-Shannon divergence and variational distance</title><source>IEEE Electronic Library (IEL)</source><creator>TSAI, Shi-Chun ; TZENG, Wen-Guey ; WU, Hsin-Lung</creator><creatorcontrib>TSAI, Shi-Chun ; TZENG, Wen-Guey ; WU, Hsin-Lung</creatorcontrib><description>We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon divergence, and the well known L/sub 1/ metric. We show that several important results and constructions in computational complexity under the L/sub 1/ metric carry over to the new metric, such as Yao's next-bit predictor, the existence of extractors, the leftover hash lemma, and the construction of expander graph based extractor. Finally, we show that the useful parity lemma in studying pseudorandomness does not hold in the new metric.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2005.853308</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Complexity theory ; Computation ; Computational complexity ; Computer science ; Construction ; Divergence ; Exact sciences and technology ; expander ; Extractors ; Extraterrestrial measurements ; Graph theory ; Graphs ; Hash based algorithms ; Information systems ; Information theory ; Information, signal and communications theory ; Jensen-Shannon divergence ; leftover hash lemma ; Mutual information ; Parity ; parity lemma ; Probability ; Probability distribution ; Sampling methods ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2005-09, Vol.51 (9), p.3333-3336</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-fd5b1500c2e9b55089ef9ffbbb51ec1db32155e1e2e650f026603627a749376c3</citedby><cites>FETCH-LOGICAL-c422t-fd5b1500c2e9b55089ef9ffbbb51ec1db32155e1e2e650f026603627a749376c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1499065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1499065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17058296$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TSAI, Shi-Chun</creatorcontrib><creatorcontrib>TZENG, Wen-Guey</creatorcontrib><creatorcontrib>WU, Hsin-Lung</creatorcontrib><title>On the Jensen-Shannon divergence and variational distance</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon divergence, and the well known L/sub 1/ metric. We show that several important results and constructions in computational complexity under the L/sub 1/ metric carry over to the new metric, such as Yao's next-bit predictor, the existence of extractors, the leftover hash lemma, and the construction of expander graph based extractor. Finally, we show that the useful parity lemma in studying pseudorandomness does not hold in the new metric.</description><subject>Applied sciences</subject><subject>Complexity theory</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computer science</subject><subject>Construction</subject><subject>Divergence</subject><subject>Exact sciences and technology</subject><subject>expander</subject><subject>Extractors</subject><subject>Extraterrestrial measurements</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hash based algorithms</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Jensen-Shannon divergence</subject><subject>leftover hash lemma</subject><subject>Mutual information</subject><subject>Parity</subject><subject>parity lemma</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Sampling methods</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM9LwzAYhoMoOKdnD16KoJ66fUmTtDnK8MdksIPzHNLui-vo0pl0A_97MzoQPHgK4X2-N18eQq4pjCgFNV5MFyMGIEaFyDIoTsiACpGnSgp-SgYAtEgV58U5uQhhHa9cUDYgau6SboXJG7qALn1fGedalyzrPfpPdBUmxi2TvfG16erWmSZGoTMxuCRn1jQBr47nkHw8Py0mr-ls_jKdPM7SijPWpXYpSioAKoaqFAIKhVZZW5aloFjRZZmxuCdSZCgFWGBSQiZZbnKuslxW2ZA89L1b337tMHR6U4cKm8Y4bHdBK8olZyLjkbz_l2QFyCL2R_D2D7hudz5-LmiqhAIa_UVo3EOVb0PwaPXW1xvjvzUFfTCuo3F9MK5743Hi7lhrQmUa66OmOvyO5SAKpg7P3_RcjYi_MVcKpMh-AO8yhxE</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>TSAI, Shi-Chun</creator><creator>TZENG, Wen-Guey</creator><creator>WU, Hsin-Lung</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050901</creationdate><title>On the Jensen-Shannon divergence and variational distance</title><author>TSAI, Shi-Chun ; TZENG, Wen-Guey ; WU, Hsin-Lung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-fd5b1500c2e9b55089ef9ffbbb51ec1db32155e1e2e650f026603627a749376c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Complexity theory</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computer science</topic><topic>Construction</topic><topic>Divergence</topic><topic>Exact sciences and technology</topic><topic>expander</topic><topic>Extractors</topic><topic>Extraterrestrial measurements</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hash based algorithms</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Jensen-Shannon divergence</topic><topic>leftover hash lemma</topic><topic>Mutual information</topic><topic>Parity</topic><topic>parity lemma</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Sampling methods</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSAI, Shi-Chun</creatorcontrib><creatorcontrib>TZENG, Wen-Guey</creatorcontrib><creatorcontrib>WU, Hsin-Lung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TSAI, Shi-Chun</au><au>TZENG, Wen-Guey</au><au>WU, Hsin-Lung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Jensen-Shannon divergence and variational distance</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>51</volume><issue>9</issue><spage>3333</spage><epage>3336</epage><pages>3333-3336</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon divergence, and the well known L/sub 1/ metric. We show that several important results and constructions in computational complexity under the L/sub 1/ metric carry over to the new metric, such as Yao's next-bit predictor, the existence of extractors, the leftover hash lemma, and the construction of expander graph based extractor. Finally, we show that the useful parity lemma in studying pseudorandomness does not hold in the new metric.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2005.853308</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2005-09, Vol.51 (9), p.3333-3336 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_914642534 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Complexity theory Computation Computational complexity Computer science Construction Divergence Exact sciences and technology expander Extractors Extraterrestrial measurements Graph theory Graphs Hash based algorithms Information systems Information theory Information, signal and communications theory Jensen-Shannon divergence leftover hash lemma Mutual information Parity parity lemma Probability Probability distribution Sampling methods Telecommunications and information theory |
title | On the Jensen-Shannon divergence and variational distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Jensen-Shannon%20divergence%20and%20variational%20distance&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=TSAI,%20Shi-Chun&rft.date=2005-09-01&rft.volume=51&rft.issue=9&rft.spage=3333&rft.epage=3336&rft.pages=3333-3336&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2005.853308&rft_dat=%3Cproquest_RIE%3E28068266%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195901308&rft_id=info:pmid/&rft_ieee_id=1499065&rfr_iscdi=true |