Active capacitor multiplier in Miller-compensated circuits
A technique is presented whereby the compensating capacitor of an internally compensated linear regulator, Miller-compensated two-stage amplifier, is effectively multiplied. Increasing the capacitance with a current-mode multiplier allows the circuit to occupy less silicon area and to more effective...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2000-01, Vol.35 (1), p.26-32 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | IEEE journal of solid-state circuits |
container_volume | 35 |
creator | Rincon-Mora, G.A. |
description | A technique is presented whereby the compensating capacitor of an internally compensated linear regulator, Miller-compensated two-stage amplifier, is effectively multiplied. Increasing the capacitance with a current-mode multiplier allows the circuit to occupy less silicon area and to more effectively drive capacitive loads. Reducing physical area requirements while producing the same or perhaps better performance is especially useful in complex systems where most, if not all, functions are integrated onto a single integrated circuit. Die area in such systems is a luxury. The increasing demand for mobile battery-operated devices is a driving force toward higher integration. The enhanced Miller-compensation technique developed in this paper helps enable higher integration while being readily applicable to any process technology, be it CMOS, bipolar, or BiCMOS. Furthermore, the technique applies, in general, to amplifier circuits in feedback configuration. Experimentally, the integrated linear regulator (fabricated in a 1-/spl mu/m BiCMOS process technology) proved to be stable for a wide variety of loading conditions: load currents of up to 200 mA, equivalent series resistance of up to 3 /spl Omega/, and load capacitors ranging from 1.5 nF to 20 /spl mu/E The total quiescent current flowing through the regulator was less than 30 /spl mu/A during zero load-current conditions. |
doi_str_mv | 10.1109/4.818917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914641464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>818917</ieee_id><sourcerecordid>2634928041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1dccc5fd1982b565312ad42c831bbd19225d412b96aa76d41360cc40b22d42973</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgCq4P8OypIKiXrpm8mnpbFl-w4kXBW0mnWcjSl0kr-O_N0sWDBz2Eycx8DAxDyBnQOQDNb8Rcg84h2yMzkFKnkPH3fTKjFHSaM0oPyVEIm5gKoWFGbhc4uE-boOkNuqHzSTPWg-trZ33i2uTZ1bX1KXZNb9tgBlsl6DyObggn5GBt6mBPd_GYvN3fvS4f09XLw9NysUqRKzWkUCGiXFeQa1ZKJTkwUwmGmkNZxipjshLAylwZk6n45YoiCloyFlme8WNyNc3tffcx2jAUjQto69q0thtDkYNQYvuivPxTMs0AuGb_w4xJwZmO8OIX3HSjb-O6BVBKhZJC8qiuJ4W-C8HbddF71xj_FVGxvUohiukqkZ5P1Flrf9iu-Q19u4TW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000465453</pqid></control><display><type>article</type><title>Active capacitor multiplier in Miller-compensated circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Rincon-Mora, G.A.</creator><creatorcontrib>Rincon-Mora, G.A.</creatorcontrib><description>A technique is presented whereby the compensating capacitor of an internally compensated linear regulator, Miller-compensated two-stage amplifier, is effectively multiplied. Increasing the capacitance with a current-mode multiplier allows the circuit to occupy less silicon area and to more effectively drive capacitive loads. Reducing physical area requirements while producing the same or perhaps better performance is especially useful in complex systems where most, if not all, functions are integrated onto a single integrated circuit. Die area in such systems is a luxury. The increasing demand for mobile battery-operated devices is a driving force toward higher integration. The enhanced Miller-compensation technique developed in this paper helps enable higher integration while being readily applicable to any process technology, be it CMOS, bipolar, or BiCMOS. Furthermore, the technique applies, in general, to amplifier circuits in feedback configuration. Experimentally, the integrated linear regulator (fabricated in a 1-/spl mu/m BiCMOS process technology) proved to be stable for a wide variety of loading conditions: load currents of up to 200 mA, equivalent series resistance of up to 3 /spl Omega/, and load capacitors ranging from 1.5 nF to 20 /spl mu/E The total quiescent current flowing through the regulator was less than 30 /spl mu/A during zero load-current conditions.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/4.818917</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplifiers ; BiCMOS integrated circuits ; Capacitors ; Circuits ; CMOS ; CMOS technology ; Complex systems ; Equivalence ; Frequency ; Impedance ; Integrated circuit technology ; Multipliers ; Regulators ; Resistors ; Silicon ; Transconductors</subject><ispartof>IEEE journal of solid-state circuits, 2000-01, Vol.35 (1), p.26-32</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1dccc5fd1982b565312ad42c831bbd19225d412b96aa76d41360cc40b22d42973</citedby><cites>FETCH-LOGICAL-c366t-1dccc5fd1982b565312ad42c831bbd19225d412b96aa76d41360cc40b22d42973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/818917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/818917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rincon-Mora, G.A.</creatorcontrib><title>Active capacitor multiplier in Miller-compensated circuits</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A technique is presented whereby the compensating capacitor of an internally compensated linear regulator, Miller-compensated two-stage amplifier, is effectively multiplied. Increasing the capacitance with a current-mode multiplier allows the circuit to occupy less silicon area and to more effectively drive capacitive loads. Reducing physical area requirements while producing the same or perhaps better performance is especially useful in complex systems where most, if not all, functions are integrated onto a single integrated circuit. Die area in such systems is a luxury. The increasing demand for mobile battery-operated devices is a driving force toward higher integration. The enhanced Miller-compensation technique developed in this paper helps enable higher integration while being readily applicable to any process technology, be it CMOS, bipolar, or BiCMOS. Furthermore, the technique applies, in general, to amplifier circuits in feedback configuration. Experimentally, the integrated linear regulator (fabricated in a 1-/spl mu/m BiCMOS process technology) proved to be stable for a wide variety of loading conditions: load currents of up to 200 mA, equivalent series resistance of up to 3 /spl Omega/, and load capacitors ranging from 1.5 nF to 20 /spl mu/E The total quiescent current flowing through the regulator was less than 30 /spl mu/A during zero load-current conditions.</description><subject>Amplifiers</subject><subject>BiCMOS integrated circuits</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Complex systems</subject><subject>Equivalence</subject><subject>Frequency</subject><subject>Impedance</subject><subject>Integrated circuit technology</subject><subject>Multipliers</subject><subject>Regulators</subject><subject>Resistors</subject><subject>Silicon</subject><subject>Transconductors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAQAOAgCq4P8OypIKiXrpm8mnpbFl-w4kXBW0mnWcjSl0kr-O_N0sWDBz2Eycx8DAxDyBnQOQDNb8Rcg84h2yMzkFKnkPH3fTKjFHSaM0oPyVEIm5gKoWFGbhc4uE-boOkNuqHzSTPWg-trZ33i2uTZ1bX1KXZNb9tgBlsl6DyObggn5GBt6mBPd_GYvN3fvS4f09XLw9NysUqRKzWkUCGiXFeQa1ZKJTkwUwmGmkNZxipjshLAylwZk6n45YoiCloyFlme8WNyNc3tffcx2jAUjQto69q0thtDkYNQYvuivPxTMs0AuGb_w4xJwZmO8OIX3HSjb-O6BVBKhZJC8qiuJ4W-C8HbddF71xj_FVGxvUohiukqkZ5P1Flrf9iu-Q19u4TW</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Rincon-Mora, G.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200001</creationdate><title>Active capacitor multiplier in Miller-compensated circuits</title><author>Rincon-Mora, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1dccc5fd1982b565312ad42c831bbd19225d412b96aa76d41360cc40b22d42973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amplifiers</topic><topic>BiCMOS integrated circuits</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Complex systems</topic><topic>Equivalence</topic><topic>Frequency</topic><topic>Impedance</topic><topic>Integrated circuit technology</topic><topic>Multipliers</topic><topic>Regulators</topic><topic>Resistors</topic><topic>Silicon</topic><topic>Transconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rincon-Mora, G.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rincon-Mora, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active capacitor multiplier in Miller-compensated circuits</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2000-01</date><risdate>2000</risdate><volume>35</volume><issue>1</issue><spage>26</spage><epage>32</epage><pages>26-32</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A technique is presented whereby the compensating capacitor of an internally compensated linear regulator, Miller-compensated two-stage amplifier, is effectively multiplied. Increasing the capacitance with a current-mode multiplier allows the circuit to occupy less silicon area and to more effectively drive capacitive loads. Reducing physical area requirements while producing the same or perhaps better performance is especially useful in complex systems where most, if not all, functions are integrated onto a single integrated circuit. Die area in such systems is a luxury. The increasing demand for mobile battery-operated devices is a driving force toward higher integration. The enhanced Miller-compensation technique developed in this paper helps enable higher integration while being readily applicable to any process technology, be it CMOS, bipolar, or BiCMOS. Furthermore, the technique applies, in general, to amplifier circuits in feedback configuration. Experimentally, the integrated linear regulator (fabricated in a 1-/spl mu/m BiCMOS process technology) proved to be stable for a wide variety of loading conditions: load currents of up to 200 mA, equivalent series resistance of up to 3 /spl Omega/, and load capacitors ranging from 1.5 nF to 20 /spl mu/E The total quiescent current flowing through the regulator was less than 30 /spl mu/A during zero load-current conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/4.818917</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2000-01, Vol.35 (1), p.26-32 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_miscellaneous_914641464 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifiers BiCMOS integrated circuits Capacitors Circuits CMOS CMOS technology Complex systems Equivalence Frequency Impedance Integrated circuit technology Multipliers Regulators Resistors Silicon Transconductors |
title | Active capacitor multiplier in Miller-compensated circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20capacitor%20multiplier%20in%20Miller-compensated%20circuits&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Rincon-Mora,%20G.A.&rft.date=2000-01&rft.volume=35&rft.issue=1&rft.spage=26&rft.epage=32&rft.pages=26-32&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/4.818917&rft_dat=%3Cproquest_RIE%3E2634928041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000465453&rft_id=info:pmid/&rft_ieee_id=818917&rfr_iscdi=true |