An HVS based adaptive quantization scheme for the compression of color images

In this paper a Human Visual System based adaptive quantization scheme is proposed. The proposed algorithm supports perceptually lossless as well as lossy compression. The algorithm uses a transform based compression approach using the wavelet transform, and has incorporated vision models for the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2010-07, Vol.20 (4), p.1129-1149
Hauptverfasser: Sreelekha, G., Sathidevi, P.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1149
container_issue 4
container_start_page 1129
container_title Digital signal processing
container_volume 20
creator Sreelekha, G.
Sathidevi, P.S.
description In this paper a Human Visual System based adaptive quantization scheme is proposed. The proposed algorithm supports perceptually lossless as well as lossy compression. The algorithm uses a transform based compression approach using the wavelet transform, and has incorporated vision models for the compression of both luminance and chrominance components. The major strength of the coder is the incorporation of the vision model for the chrominance components and the optimum way in which the scales are distributed among the luminance and chrominance components to achieve higher compression ratios. The perceptual model developed for the color components gives flexibility for giving more compression for the color components without causing any color degradations. For each image the visual thresholds are evaluated and an optimum bit allocation is done in such a way that the quantization error is always less than the visual distortion for the given rate. To validate the strength of the proposed algorithm, the perceptual quality of the images reconstructed using the proposed coder is compared with the images reconstructed with JPEG2000 standard coder, for the same compression. To evaluate the perceptual quality of the compressed images latest perceptual quality matrices such as Structural Similarity Index, Visual Information Fidelity and Visual Signal-to-Noise Ratio are used. The results obtained reveal that the proposed structure gives excellent improvement in perceptual quality compared to the existing schemes, for both lossy as well as lossless compression. These advantages make the proposed algorithm a good candidate for replacing the quantizer stage of the current image compression standards.
doi_str_mv 10.1016/j.dsp.2009.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914629284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1051200409002474</els_id><sourcerecordid>914629284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e034bf8a2bb5116d0b26d1c0a329e168b1ab17e46bf44ab1c80bd955fdf413573</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwAeyyY5XgsZ00EauqAooEYsFja_kxoa6SOLXTSvD1OCprVnNHZ-5o5ibJNZAcCJS329yEIaeE1DnQnBB2ksyA1EXGGWOnky4gi5ifJxchbAkhC07LWfKy7NP151uqZECTSiOH0R4w3e1lP9ofOVrXp0FvsMO0cT4dN5hq1w0eQ5iQa2LbRmA7-YXhMjlrZBvw6q_Ok4-H-_fVOnt-fXxaLZ8zzWg9ZkgYV00lqVIFQGmIoqUBTWSkCGWlQCpYIC9Vw3mUuiLK1EXRmIYDKxZsntwc9w7e7fYYRtHZoLFtZY9uH0QNvKQ1rXichOOk9i4Ej40YfLzVfwsgYkpObEVMTkzJCaAiJhc9d0cPxhcOFr0I2mKv0ViPehTG2X_cv1kRdoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914629284</pqid></control><display><type>article</type><title>An HVS based adaptive quantization scheme for the compression of color images</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sreelekha, G. ; Sathidevi, P.S.</creator><creatorcontrib>Sreelekha, G. ; Sathidevi, P.S.</creatorcontrib><description>In this paper a Human Visual System based adaptive quantization scheme is proposed. The proposed algorithm supports perceptually lossless as well as lossy compression. The algorithm uses a transform based compression approach using the wavelet transform, and has incorporated vision models for the compression of both luminance and chrominance components. The major strength of the coder is the incorporation of the vision model for the chrominance components and the optimum way in which the scales are distributed among the luminance and chrominance components to achieve higher compression ratios. The perceptual model developed for the color components gives flexibility for giving more compression for the color components without causing any color degradations. For each image the visual thresholds are evaluated and an optimum bit allocation is done in such a way that the quantization error is always less than the visual distortion for the given rate. To validate the strength of the proposed algorithm, the perceptual quality of the images reconstructed using the proposed coder is compared with the images reconstructed with JPEG2000 standard coder, for the same compression. To evaluate the perceptual quality of the compressed images latest perceptual quality matrices such as Structural Similarity Index, Visual Information Fidelity and Visual Signal-to-Noise Ratio are used. The results obtained reveal that the proposed structure gives excellent improvement in perceptual quality compared to the existing schemes, for both lossy as well as lossless compression. These advantages make the proposed algorithm a good candidate for replacing the quantizer stage of the current image compression standards.</description><identifier>ISSN: 1051-2004</identifier><identifier>EISSN: 1095-4333</identifier><identifier>DOI: 10.1016/j.dsp.2009.12.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Coders ; Color ; Color image compression ; Compressing ; Human Vision System ; JPEG2000 ; Luminance ; Quantization ; Visual ; Wavelet</subject><ispartof>Digital signal processing, 2010-07, Vol.20 (4), p.1129-1149</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-e034bf8a2bb5116d0b26d1c0a329e168b1ab17e46bf44ab1c80bd955fdf413573</citedby><cites>FETCH-LOGICAL-c329t-e034bf8a2bb5116d0b26d1c0a329e168b1ab17e46bf44ab1c80bd955fdf413573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dsp.2009.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sreelekha, G.</creatorcontrib><creatorcontrib>Sathidevi, P.S.</creatorcontrib><title>An HVS based adaptive quantization scheme for the compression of color images</title><title>Digital signal processing</title><description>In this paper a Human Visual System based adaptive quantization scheme is proposed. The proposed algorithm supports perceptually lossless as well as lossy compression. The algorithm uses a transform based compression approach using the wavelet transform, and has incorporated vision models for the compression of both luminance and chrominance components. The major strength of the coder is the incorporation of the vision model for the chrominance components and the optimum way in which the scales are distributed among the luminance and chrominance components to achieve higher compression ratios. The perceptual model developed for the color components gives flexibility for giving more compression for the color components without causing any color degradations. For each image the visual thresholds are evaluated and an optimum bit allocation is done in such a way that the quantization error is always less than the visual distortion for the given rate. To validate the strength of the proposed algorithm, the perceptual quality of the images reconstructed using the proposed coder is compared with the images reconstructed with JPEG2000 standard coder, for the same compression. To evaluate the perceptual quality of the compressed images latest perceptual quality matrices such as Structural Similarity Index, Visual Information Fidelity and Visual Signal-to-Noise Ratio are used. The results obtained reveal that the proposed structure gives excellent improvement in perceptual quality compared to the existing schemes, for both lossy as well as lossless compression. These advantages make the proposed algorithm a good candidate for replacing the quantizer stage of the current image compression standards.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Color</subject><subject>Color image compression</subject><subject>Compressing</subject><subject>Human Vision System</subject><subject>JPEG2000</subject><subject>Luminance</subject><subject>Quantization</subject><subject>Visual</subject><subject>Wavelet</subject><issn>1051-2004</issn><issn>1095-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwAeyyY5XgsZ00EauqAooEYsFja_kxoa6SOLXTSvD1OCprVnNHZ-5o5ibJNZAcCJS329yEIaeE1DnQnBB2ksyA1EXGGWOnky4gi5ifJxchbAkhC07LWfKy7NP151uqZECTSiOH0R4w3e1lP9ofOVrXp0FvsMO0cT4dN5hq1w0eQ5iQa2LbRmA7-YXhMjlrZBvw6q_Ok4-H-_fVOnt-fXxaLZ8zzWg9ZkgYV00lqVIFQGmIoqUBTWSkCGWlQCpYIC9Vw3mUuiLK1EXRmIYDKxZsntwc9w7e7fYYRtHZoLFtZY9uH0QNvKQ1rXichOOk9i4Ej40YfLzVfwsgYkpObEVMTkzJCaAiJhc9d0cPxhcOFr0I2mKv0ViPehTG2X_cv1kRdoA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Sreelekha, G.</creator><creator>Sathidevi, P.S.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>An HVS based adaptive quantization scheme for the compression of color images</title><author>Sreelekha, G. ; Sathidevi, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e034bf8a2bb5116d0b26d1c0a329e168b1ab17e46bf44ab1c80bd955fdf413573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Color</topic><topic>Color image compression</topic><topic>Compressing</topic><topic>Human Vision System</topic><topic>JPEG2000</topic><topic>Luminance</topic><topic>Quantization</topic><topic>Visual</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sreelekha, G.</creatorcontrib><creatorcontrib>Sathidevi, P.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sreelekha, G.</au><au>Sathidevi, P.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An HVS based adaptive quantization scheme for the compression of color images</atitle><jtitle>Digital signal processing</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>20</volume><issue>4</issue><spage>1129</spage><epage>1149</epage><pages>1129-1149</pages><issn>1051-2004</issn><eissn>1095-4333</eissn><abstract>In this paper a Human Visual System based adaptive quantization scheme is proposed. The proposed algorithm supports perceptually lossless as well as lossy compression. The algorithm uses a transform based compression approach using the wavelet transform, and has incorporated vision models for the compression of both luminance and chrominance components. The major strength of the coder is the incorporation of the vision model for the chrominance components and the optimum way in which the scales are distributed among the luminance and chrominance components to achieve higher compression ratios. The perceptual model developed for the color components gives flexibility for giving more compression for the color components without causing any color degradations. For each image the visual thresholds are evaluated and an optimum bit allocation is done in such a way that the quantization error is always less than the visual distortion for the given rate. To validate the strength of the proposed algorithm, the perceptual quality of the images reconstructed using the proposed coder is compared with the images reconstructed with JPEG2000 standard coder, for the same compression. To evaluate the perceptual quality of the compressed images latest perceptual quality matrices such as Structural Similarity Index, Visual Information Fidelity and Visual Signal-to-Noise Ratio are used. The results obtained reveal that the proposed structure gives excellent improvement in perceptual quality compared to the existing schemes, for both lossy as well as lossless compression. These advantages make the proposed algorithm a good candidate for replacing the quantizer stage of the current image compression standards.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.dsp.2009.12.003</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-2004
ispartof Digital signal processing, 2010-07, Vol.20 (4), p.1129-1149
issn 1051-2004
1095-4333
language eng
recordid cdi_proquest_miscellaneous_914629284
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Coders
Color
Color image compression
Compressing
Human Vision System
JPEG2000
Luminance
Quantization
Visual
Wavelet
title An HVS based adaptive quantization scheme for the compression of color images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20HVS%20based%20adaptive%20quantization%20scheme%20for%20the%20compression%20of%20color%20images&rft.jtitle=Digital%20signal%20processing&rft.au=Sreelekha,%20G.&rft.date=2010-07-01&rft.volume=20&rft.issue=4&rft.spage=1129&rft.epage=1149&rft.pages=1129-1149&rft.issn=1051-2004&rft.eissn=1095-4333&rft_id=info:doi/10.1016/j.dsp.2009.12.003&rft_dat=%3Cproquest_cross%3E914629284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914629284&rft_id=info:pmid/&rft_els_id=S1051200409002474&rfr_iscdi=true