Voice activity detection based on using wavelet packet

This paper, presents a robust voice activity detection (VAD) technique based on wavelet packet. In this technique sub-bands and their amplitudes are represented as the vectors for each sample time in order to find a new feature from the frequency and amplitude changes. On the other hand, the multi-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2010-07, Vol.20 (4), p.1102-1115
Hauptverfasser: Eshaghi, Mohadese, Karami Mollaei, M.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1115
container_issue 4
container_start_page 1102
container_title Digital signal processing
container_volume 20
creator Eshaghi, Mohadese
Karami Mollaei, M.R.
description This paper, presents a robust voice activity detection (VAD) technique based on wavelet packet. In this technique sub-bands and their amplitudes are represented as the vectors for each sample time in order to find a new feature from the frequency and amplitude changes. On the other hand, the multi-resolution analysis property of the wavelet packet transform (WPT), the voiced, unvoiced, and transient components of speech can be distinctly discriminated. Then, a new feature extraction method is implemented based on observations of the angles between vectors. This feature extraction method retains most unvoiced sounds in a voice active frame. Experimental results show that the proposed WT feature parameter can extract the speech activity under poor SNR conditions and that it is also insensitive to variable-level of noise.
doi_str_mv 10.1016/j.dsp.2009.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914629245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1051200409002449</els_id><sourcerecordid>914629245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-95eba54f66d644eec161f59e2939a4eba7003edaad4e5b0ebc7f8ee1df7af6ab3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGzZmBJ8YsepxYQqblIlFmC1HPsYuaRJsN2ivj2uysx0fum_SOcj5BpoBRTE7bqycapqSmUFUFG6OCEzoLIpOWPs9KAbKLPNz8lFjGtKactrMSPiY_QGC22S3_m0LywmzHocik5HtEUW2-iHz-JH77DHVEzafGG6JGdO9xGv_u6cvD8-vC2fy9Xr08vyflUaVstUygY73XAnhBWcIxoQ4BqJtWRS8-y1lDK0WluOTUexM61bIIJ1rXZCd2xObo67Uxi_txiT2vhosO_1gOM2Kglc1LLmTU7CMWnCGGNAp6bgNzrsFVB1QKTWKiNSB0QKQGVEuXN37GB-YecxqGg8DgatD5mCsqP_p_0L00dv0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914629245</pqid></control><display><type>article</type><title>Voice activity detection based on using wavelet packet</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Eshaghi, Mohadese ; Karami Mollaei, M.R.</creator><creatorcontrib>Eshaghi, Mohadese ; Karami Mollaei, M.R.</creatorcontrib><description>This paper, presents a robust voice activity detection (VAD) technique based on wavelet packet. In this technique sub-bands and their amplitudes are represented as the vectors for each sample time in order to find a new feature from the frequency and amplitude changes. On the other hand, the multi-resolution analysis property of the wavelet packet transform (WPT), the voiced, unvoiced, and transient components of speech can be distinctly discriminated. Then, a new feature extraction method is implemented based on observations of the angles between vectors. This feature extraction method retains most unvoiced sounds in a voice active frame. Experimental results show that the proposed WT feature parameter can extract the speech activity under poor SNR conditions and that it is also insensitive to variable-level of noise.</description><identifier>ISSN: 1051-2004</identifier><identifier>EISSN: 1095-4333</identifier><identifier>DOI: 10.1016/j.dsp.2009.11.008</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Amplitudes ; Discrete wavelet packet ; Feature extraction ; Mathematical analysis ; Speech ; Speech processing ; Transforms ; Vectors (mathematics) ; Voice ; Voice activity detection ; Wavelet</subject><ispartof>Digital signal processing, 2010-07, Vol.20 (4), p.1102-1115</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-95eba54f66d644eec161f59e2939a4eba7003edaad4e5b0ebc7f8ee1df7af6ab3</citedby><cites>FETCH-LOGICAL-c329t-95eba54f66d644eec161f59e2939a4eba7003edaad4e5b0ebc7f8ee1df7af6ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dsp.2009.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Eshaghi, Mohadese</creatorcontrib><creatorcontrib>Karami Mollaei, M.R.</creatorcontrib><title>Voice activity detection based on using wavelet packet</title><title>Digital signal processing</title><description>This paper, presents a robust voice activity detection (VAD) technique based on wavelet packet. In this technique sub-bands and their amplitudes are represented as the vectors for each sample time in order to find a new feature from the frequency and amplitude changes. On the other hand, the multi-resolution analysis property of the wavelet packet transform (WPT), the voiced, unvoiced, and transient components of speech can be distinctly discriminated. Then, a new feature extraction method is implemented based on observations of the angles between vectors. This feature extraction method retains most unvoiced sounds in a voice active frame. Experimental results show that the proposed WT feature parameter can extract the speech activity under poor SNR conditions and that it is also insensitive to variable-level of noise.</description><subject>Amplitudes</subject><subject>Discrete wavelet packet</subject><subject>Feature extraction</subject><subject>Mathematical analysis</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Transforms</subject><subject>Vectors (mathematics)</subject><subject>Voice</subject><subject>Voice activity detection</subject><subject>Wavelet</subject><issn>1051-2004</issn><issn>1095-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGzZmBJ8YsepxYQqblIlFmC1HPsYuaRJsN2ivj2uysx0fum_SOcj5BpoBRTE7bqycapqSmUFUFG6OCEzoLIpOWPs9KAbKLPNz8lFjGtKactrMSPiY_QGC22S3_m0LywmzHocik5HtEUW2-iHz-JH77DHVEzafGG6JGdO9xGv_u6cvD8-vC2fy9Xr08vyflUaVstUygY73XAnhBWcIxoQ4BqJtWRS8-y1lDK0WluOTUexM61bIIJ1rXZCd2xObo67Uxi_txiT2vhosO_1gOM2Kglc1LLmTU7CMWnCGGNAp6bgNzrsFVB1QKTWKiNSB0QKQGVEuXN37GB-YecxqGg8DgatD5mCsqP_p_0L00dv0A</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Eshaghi, Mohadese</creator><creator>Karami Mollaei, M.R.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>Voice activity detection based on using wavelet packet</title><author>Eshaghi, Mohadese ; Karami Mollaei, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-95eba54f66d644eec161f59e2939a4eba7003edaad4e5b0ebc7f8ee1df7af6ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amplitudes</topic><topic>Discrete wavelet packet</topic><topic>Feature extraction</topic><topic>Mathematical analysis</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Transforms</topic><topic>Vectors (mathematics)</topic><topic>Voice</topic><topic>Voice activity detection</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eshaghi, Mohadese</creatorcontrib><creatorcontrib>Karami Mollaei, M.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eshaghi, Mohadese</au><au>Karami Mollaei, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voice activity detection based on using wavelet packet</atitle><jtitle>Digital signal processing</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>20</volume><issue>4</issue><spage>1102</spage><epage>1115</epage><pages>1102-1115</pages><issn>1051-2004</issn><eissn>1095-4333</eissn><abstract>This paper, presents a robust voice activity detection (VAD) technique based on wavelet packet. In this technique sub-bands and their amplitudes are represented as the vectors for each sample time in order to find a new feature from the frequency and amplitude changes. On the other hand, the multi-resolution analysis property of the wavelet packet transform (WPT), the voiced, unvoiced, and transient components of speech can be distinctly discriminated. Then, a new feature extraction method is implemented based on observations of the angles between vectors. This feature extraction method retains most unvoiced sounds in a voice active frame. Experimental results show that the proposed WT feature parameter can extract the speech activity under poor SNR conditions and that it is also insensitive to variable-level of noise.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.dsp.2009.11.008</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-2004
ispartof Digital signal processing, 2010-07, Vol.20 (4), p.1102-1115
issn 1051-2004
1095-4333
language eng
recordid cdi_proquest_miscellaneous_914629245
source Elsevier ScienceDirect Journals Complete
subjects Amplitudes
Discrete wavelet packet
Feature extraction
Mathematical analysis
Speech
Speech processing
Transforms
Vectors (mathematics)
Voice
Voice activity detection
Wavelet
title Voice activity detection based on using wavelet packet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voice%20activity%20detection%20based%20on%20using%20wavelet%20packet&rft.jtitle=Digital%20signal%20processing&rft.au=Eshaghi,%20Mohadese&rft.date=2010-07-01&rft.volume=20&rft.issue=4&rft.spage=1102&rft.epage=1115&rft.pages=1102-1115&rft.issn=1051-2004&rft.eissn=1095-4333&rft_id=info:doi/10.1016/j.dsp.2009.11.008&rft_dat=%3Cproquest_cross%3E914629245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914629245&rft_id=info:pmid/&rft_els_id=S1051200409002449&rfr_iscdi=true