Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle

This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2009-11, Vol.45 (11), p.2612-2619
Hauptverfasser: Yin, Liping, Guo, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2619
container_issue 11
container_start_page 2612
container_title Automatica (Oxford)
container_volume 45
creator Yin, Liping
Guo, Lei
description This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.
doi_str_mv 10.1016/j.automatica.2009.07.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914627770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109809003598</els_id><sourcerecordid>914627770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</originalsourceid><addsrcrecordid>eNqFUE1v1DAQtRBILIX_4AvilOCPdWIfoaItUqVeytmadSaVV44dbKfS9tfj1VZw5DRfb96beYRQznrO-PD12MNW0wLVO-gFY6ZnY8-EfEN2XI-yE1oOb8mOMaY6zox-Tz6UcmzlnmuxI-sNbKFSX1JoFCnSOWW6tJZ_huyhIo0pBh8R8jnrbmErxUOk5VQqLoVuxccn-oQRMwT_ghPFWHNaTzSt1S_-5UK7Zh-dXwN-JO9mCAU_vcYr8uvmx-P1XXf_cPvz-tt956RmtVM4uQMaw4yQMJgDE61EJafB6L0Wo5rFQTkYndJas3kYJKA0TuyFUkObyyvy5cK75vR7w1Lt4ovDECBi2oo1fD-IcRxZQ-oL0uVUSsbZtmMXyCfLmT17bI_2n8f27LFlo20et9XPryJQHIQ5Q3uy_N0XgguulGq47xccto-fPWZbnMfocPIZXbVT8v8X-wOyE5q2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914627770</pqid></control><display><type>article</type><title>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</title><source>Elsevier ScienceDirect Journals</source><creator>Yin, Liping ; Guo, Lei</creator><creatorcontrib>Yin, Liping ; Guo, Lei</creatorcontrib><description>This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2009.07.023</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Disturbances ; Dynamical systems ; Entropy ; Entropy optimization ; Exact sciences and technology ; Fault isolation and accommodation ; Faults ; Knowledge-driven filtering ; Modelling and identification ; Multivariate stochastic systems ; Non-Gaussian ; Non-Gaussian systems ; Nonlinear dynamics ; Nonlinearity ; Nuisance ; Optimal control ; Optimal control and estimation</subject><ispartof>Automatica (Oxford), 2009-11, Vol.45 (11), p.2612-2619</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</citedby><cites>FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109809003598$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22121555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Liping</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><title>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</title><title>Automatica (Oxford)</title><description>This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Disturbances</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Entropy optimization</subject><subject>Exact sciences and technology</subject><subject>Fault isolation and accommodation</subject><subject>Faults</subject><subject>Knowledge-driven filtering</subject><subject>Modelling and identification</subject><subject>Multivariate stochastic systems</subject><subject>Non-Gaussian</subject><subject>Non-Gaussian systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Nuisance</subject><subject>Optimal control</subject><subject>Optimal control and estimation</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUE1v1DAQtRBILIX_4AvilOCPdWIfoaItUqVeytmadSaVV44dbKfS9tfj1VZw5DRfb96beYRQznrO-PD12MNW0wLVO-gFY6ZnY8-EfEN2XI-yE1oOb8mOMaY6zox-Tz6UcmzlnmuxI-sNbKFSX1JoFCnSOWW6tJZ_huyhIo0pBh8R8jnrbmErxUOk5VQqLoVuxccn-oQRMwT_ghPFWHNaTzSt1S_-5UK7Zh-dXwN-JO9mCAU_vcYr8uvmx-P1XXf_cPvz-tt956RmtVM4uQMaw4yQMJgDE61EJafB6L0Wo5rFQTkYndJas3kYJKA0TuyFUkObyyvy5cK75vR7w1Lt4ovDECBi2oo1fD-IcRxZQ-oL0uVUSsbZtmMXyCfLmT17bI_2n8f27LFlo20et9XPryJQHIQ5Q3uy_N0XgguulGq47xccto-fPWZbnMfocPIZXbVT8v8X-wOyE5q2</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Yin, Liping</creator><creator>Guo, Lei</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</title><author>Yin, Liping ; Guo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Disturbances</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Entropy optimization</topic><topic>Exact sciences and technology</topic><topic>Fault isolation and accommodation</topic><topic>Faults</topic><topic>Knowledge-driven filtering</topic><topic>Modelling and identification</topic><topic>Multivariate stochastic systems</topic><topic>Non-Gaussian</topic><topic>Non-Gaussian systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Nuisance</topic><topic>Optimal control</topic><topic>Optimal control and estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Liping</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Liping</au><au>Guo, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</atitle><jtitle>Automatica (Oxford)</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>45</volume><issue>11</issue><spage>2612</spage><epage>2619</epage><pages>2612-2619</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2009.07.023</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2009-11, Vol.45 (11), p.2612-2619
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_914627770
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Disturbances
Dynamical systems
Entropy
Entropy optimization
Exact sciences and technology
Fault isolation and accommodation
Faults
Knowledge-driven filtering
Modelling and identification
Multivariate stochastic systems
Non-Gaussian
Non-Gaussian systems
Nonlinear dynamics
Nonlinearity
Nuisance
Optimal control
Optimal control and estimation
title Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20isolation%20for%20multivariate%20nonlinear%20non-Gaussian%20systems%20using%20generalized%20entropy%20optimization%20principle&rft.jtitle=Automatica%20(Oxford)&rft.au=Yin,%20Liping&rft.date=2009-11-01&rft.volume=45&rft.issue=11&rft.spage=2612&rft.epage=2619&rft.pages=2612-2619&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2009.07.023&rft_dat=%3Cproquest_cross%3E914627770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914627770&rft_id=info:pmid/&rft_els_id=S0005109809003598&rfr_iscdi=true