Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle
This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic in...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2009-11, Vol.45 (11), p.2612-2619 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2619 |
---|---|
container_issue | 11 |
container_start_page | 2612 |
container_title | Automatica (Oxford) |
container_volume | 45 |
creator | Yin, Liping Guo, Lei |
description | This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms. |
doi_str_mv | 10.1016/j.automatica.2009.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914627770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109809003598</els_id><sourcerecordid>914627770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</originalsourceid><addsrcrecordid>eNqFUE1v1DAQtRBILIX_4AvilOCPdWIfoaItUqVeytmadSaVV44dbKfS9tfj1VZw5DRfb96beYRQznrO-PD12MNW0wLVO-gFY6ZnY8-EfEN2XI-yE1oOb8mOMaY6zox-Tz6UcmzlnmuxI-sNbKFSX1JoFCnSOWW6tJZ_huyhIo0pBh8R8jnrbmErxUOk5VQqLoVuxccn-oQRMwT_ghPFWHNaTzSt1S_-5UK7Zh-dXwN-JO9mCAU_vcYr8uvmx-P1XXf_cPvz-tt956RmtVM4uQMaw4yQMJgDE61EJafB6L0Wo5rFQTkYndJas3kYJKA0TuyFUkObyyvy5cK75vR7w1Lt4ovDECBi2oo1fD-IcRxZQ-oL0uVUSsbZtmMXyCfLmT17bI_2n8f27LFlo20et9XPryJQHIQ5Q3uy_N0XgguulGq47xccto-fPWZbnMfocPIZXbVT8v8X-wOyE5q2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914627770</pqid></control><display><type>article</type><title>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</title><source>Elsevier ScienceDirect Journals</source><creator>Yin, Liping ; Guo, Lei</creator><creatorcontrib>Yin, Liping ; Guo, Lei</creatorcontrib><description>This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2009.07.023</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Disturbances ; Dynamical systems ; Entropy ; Entropy optimization ; Exact sciences and technology ; Fault isolation and accommodation ; Faults ; Knowledge-driven filtering ; Modelling and identification ; Multivariate stochastic systems ; Non-Gaussian ; Non-Gaussian systems ; Nonlinear dynamics ; Nonlinearity ; Nuisance ; Optimal control ; Optimal control and estimation</subject><ispartof>Automatica (Oxford), 2009-11, Vol.45 (11), p.2612-2619</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</citedby><cites>FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109809003598$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22121555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Liping</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><title>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</title><title>Automatica (Oxford)</title><description>This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Disturbances</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Entropy optimization</subject><subject>Exact sciences and technology</subject><subject>Fault isolation and accommodation</subject><subject>Faults</subject><subject>Knowledge-driven filtering</subject><subject>Modelling and identification</subject><subject>Multivariate stochastic systems</subject><subject>Non-Gaussian</subject><subject>Non-Gaussian systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Nuisance</subject><subject>Optimal control</subject><subject>Optimal control and estimation</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUE1v1DAQtRBILIX_4AvilOCPdWIfoaItUqVeytmadSaVV44dbKfS9tfj1VZw5DRfb96beYRQznrO-PD12MNW0wLVO-gFY6ZnY8-EfEN2XI-yE1oOb8mOMaY6zox-Tz6UcmzlnmuxI-sNbKFSX1JoFCnSOWW6tJZ_huyhIo0pBh8R8jnrbmErxUOk5VQqLoVuxccn-oQRMwT_ghPFWHNaTzSt1S_-5UK7Zh-dXwN-JO9mCAU_vcYr8uvmx-P1XXf_cPvz-tt956RmtVM4uQMaw4yQMJgDE61EJafB6L0Wo5rFQTkYndJas3kYJKA0TuyFUkObyyvy5cK75vR7w1Lt4ovDECBi2oo1fD-IcRxZQ-oL0uVUSsbZtmMXyCfLmT17bI_2n8f27LFlo20et9XPryJQHIQ5Q3uy_N0XgguulGq47xccto-fPWZbnMfocPIZXbVT8v8X-wOyE5q2</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Yin, Liping</creator><creator>Guo, Lei</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</title><author>Yin, Liping ; Guo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-5edcbe990923a69b02cbee53d69848275f2b5ca7c58880f663ae39c2425568273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Disturbances</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Entropy optimization</topic><topic>Exact sciences and technology</topic><topic>Fault isolation and accommodation</topic><topic>Faults</topic><topic>Knowledge-driven filtering</topic><topic>Modelling and identification</topic><topic>Multivariate stochastic systems</topic><topic>Non-Gaussian</topic><topic>Non-Gaussian systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Nuisance</topic><topic>Optimal control</topic><topic>Optimal control and estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Liping</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Liping</au><au>Guo, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle</atitle><jtitle>Automatica (Oxford)</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>45</volume><issue>11</issue><spage>2612</spage><epage>2619</epage><pages>2612-2619</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper is concerned with the fault isolation (FI) problem for multivariate nonlinear non-Gaussian systems by using a novel filtering method. The generalized entropy optimization principle (GEOP) is established for non-Gaussian systems with multiple faults and disturbances, where the statistic information including entropy and mean of the residual variable is maximized in the presence of the target fault as well as all the nuisance faults and disturbances, and is minimized in the absence of the target fault but in the presence of the nuisance faults and disturbances. Different from the existing results where the output is measurable for feedback, the fault isolation filter is designed and driven by the joint output stochastic distributions rather than its deterministic value. The error dynamics is represented by a multivariate nonlinear non-Gaussian system, for which new recursive relationships are proposed to formulate the joint probability density functions (JPDFs) of the residual variable in terms of the JPDFs of the noises and the faults. Finally, a simulation example is given to demonstrate the effectiveness of the proposed multivariate FI algorithms.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2009.07.023</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2009-11, Vol.45 (11), p.2612-2619 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_914627770 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Disturbances Dynamical systems Entropy Entropy optimization Exact sciences and technology Fault isolation and accommodation Faults Knowledge-driven filtering Modelling and identification Multivariate stochastic systems Non-Gaussian Non-Gaussian systems Nonlinear dynamics Nonlinearity Nuisance Optimal control Optimal control and estimation |
title | Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20isolation%20for%20multivariate%20nonlinear%20non-Gaussian%20systems%20using%20generalized%20entropy%20optimization%20principle&rft.jtitle=Automatica%20(Oxford)&rft.au=Yin,%20Liping&rft.date=2009-11-01&rft.volume=45&rft.issue=11&rft.spage=2612&rft.epage=2619&rft.pages=2612-2619&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2009.07.023&rft_dat=%3Cproquest_cross%3E914627770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914627770&rft_id=info:pmid/&rft_els_id=S0005109809003598&rfr_iscdi=true |