Generalized quantum entropies

A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consisten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2011-08, Vol.375 (35), p.3119-3123
Hauptverfasser: Santos, A.P., Silva, R., Alcaniz, J.S., Anselmo, D.H.A.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3123
container_issue 35
container_start_page 3119
container_title Physics letters. A
container_volume 375
creator Santos, A.P.
Silva, R.
Alcaniz, J.S.
Anselmo, D.H.A.L.
description A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts. ► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.
doi_str_mv 10.1016/j.physleta.2011.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914626453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960111008292</els_id><sourcerecordid>914626453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BGVvnlpnkjZpbsqiq7DgRc8hJlPM0m27SSusv94uq2dPw8D3HryPsRuEHAHl3SbvP_epocHmHBBzUDkAnrAZVkpkvOD6lM1AqDLTEvCcXaS0gYmQoGfsekUtRduEb_KL3WjbYdwuqB1i1wdKl-ystk2iq987Z-9Pj2_L52z9unpZPqwzJzQfMq8s6Uoq4pVWUAjrRQHEa6dKIIfOoyuErrQUwIX4qBAkYgW-rLifXi3m7PbY28duN1IazDYkR01jW-rGZDQWksuiFBMpj6SLXUqRatPHsLVxbxDMQYfZmD8d5qDDgDLT2Cl4fwzStOMrUDTJBWod-RDJDcZ34b-KH1x5anU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914626453</pqid></control><display><type>article</type><title>Generalized quantum entropies</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</creator><creatorcontrib>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</creatorcontrib><description>A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts. ► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2011.07.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coefficients ; Deduction ; Deformation ; Division ; Entropy ; Multiplication ; Nonextensivity ; Qantum statistical mechanics ; Solid state physics</subject><ispartof>Physics letters. A, 2011-08, Vol.375 (35), p.3119-3123</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</citedby><cites>FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2011.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Santos, A.P.</creatorcontrib><creatorcontrib>Silva, R.</creatorcontrib><creatorcontrib>Alcaniz, J.S.</creatorcontrib><creatorcontrib>Anselmo, D.H.A.L.</creatorcontrib><title>Generalized quantum entropies</title><title>Physics letters. A</title><description>A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts. ► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.</description><subject>Coefficients</subject><subject>Deduction</subject><subject>Deformation</subject><subject>Division</subject><subject>Entropy</subject><subject>Multiplication</subject><subject>Nonextensivity</subject><subject>Qantum statistical mechanics</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BGVvnlpnkjZpbsqiq7DgRc8hJlPM0m27SSusv94uq2dPw8D3HryPsRuEHAHl3SbvP_epocHmHBBzUDkAnrAZVkpkvOD6lM1AqDLTEvCcXaS0gYmQoGfsekUtRduEb_KL3WjbYdwuqB1i1wdKl-ystk2iq987Z-9Pj2_L52z9unpZPqwzJzQfMq8s6Uoq4pVWUAjrRQHEa6dKIIfOoyuErrQUwIX4qBAkYgW-rLifXi3m7PbY28duN1IazDYkR01jW-rGZDQWksuiFBMpj6SLXUqRatPHsLVxbxDMQYfZmD8d5qDDgDLT2Cl4fwzStOMrUDTJBWod-RDJDcZ34b-KH1x5anU</recordid><startdate>20110815</startdate><enddate>20110815</enddate><creator>Santos, A.P.</creator><creator>Silva, R.</creator><creator>Alcaniz, J.S.</creator><creator>Anselmo, D.H.A.L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110815</creationdate><title>Generalized quantum entropies</title><author>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficients</topic><topic>Deduction</topic><topic>Deformation</topic><topic>Division</topic><topic>Entropy</topic><topic>Multiplication</topic><topic>Nonextensivity</topic><topic>Qantum statistical mechanics</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, A.P.</creatorcontrib><creatorcontrib>Silva, R.</creatorcontrib><creatorcontrib>Alcaniz, J.S.</creatorcontrib><creatorcontrib>Anselmo, D.H.A.L.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, A.P.</au><au>Silva, R.</au><au>Alcaniz, J.S.</au><au>Anselmo, D.H.A.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized quantum entropies</atitle><jtitle>Physics letters. A</jtitle><date>2011-08-15</date><risdate>2011</risdate><volume>375</volume><issue>35</issue><spage>3119</spage><epage>3123</epage><pages>3119-3123</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts. ► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2011.07.001</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2011-08, Vol.375 (35), p.3119-3123
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_914626453
source Elsevier ScienceDirect Journals Complete
subjects Coefficients
Deduction
Deformation
Division
Entropy
Multiplication
Nonextensivity
Qantum statistical mechanics
Solid state physics
title Generalized quantum entropies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20quantum%20entropies&rft.jtitle=Physics%20letters.%20A&rft.au=Santos,%20A.P.&rft.date=2011-08-15&rft.volume=375&rft.issue=35&rft.spage=3119&rft.epage=3123&rft.pages=3119-3123&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2011.07.001&rft_dat=%3Cproquest_cross%3E914626453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914626453&rft_id=info:pmid/&rft_els_id=S0375960111008292&rfr_iscdi=true