Generalized quantum entropies
A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consisten...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2011-08, Vol.375 (35), p.3119-3123 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3123 |
---|---|
container_issue | 35 |
container_start_page | 3119 |
container_title | Physics letters. A |
container_volume | 375 |
creator | Santos, A.P. Silva, R. Alcaniz, J.S. Anselmo, D.H.A.L. |
description | A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.
► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics. |
doi_str_mv | 10.1016/j.physleta.2011.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914626453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960111008292</els_id><sourcerecordid>914626453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BGVvnlpnkjZpbsqiq7DgRc8hJlPM0m27SSusv94uq2dPw8D3HryPsRuEHAHl3SbvP_epocHmHBBzUDkAnrAZVkpkvOD6lM1AqDLTEvCcXaS0gYmQoGfsekUtRduEb_KL3WjbYdwuqB1i1wdKl-ystk2iq987Z-9Pj2_L52z9unpZPqwzJzQfMq8s6Uoq4pVWUAjrRQHEa6dKIIfOoyuErrQUwIX4qBAkYgW-rLifXi3m7PbY28duN1IazDYkR01jW-rGZDQWksuiFBMpj6SLXUqRatPHsLVxbxDMQYfZmD8d5qDDgDLT2Cl4fwzStOMrUDTJBWod-RDJDcZ34b-KH1x5anU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914626453</pqid></control><display><type>article</type><title>Generalized quantum entropies</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</creator><creatorcontrib>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</creatorcontrib><description>A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.
► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2011.07.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coefficients ; Deduction ; Deformation ; Division ; Entropy ; Multiplication ; Nonextensivity ; Qantum statistical mechanics ; Solid state physics</subject><ispartof>Physics letters. A, 2011-08, Vol.375 (35), p.3119-3123</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</citedby><cites>FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2011.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Santos, A.P.</creatorcontrib><creatorcontrib>Silva, R.</creatorcontrib><creatorcontrib>Alcaniz, J.S.</creatorcontrib><creatorcontrib>Anselmo, D.H.A.L.</creatorcontrib><title>Generalized quantum entropies</title><title>Physics letters. A</title><description>A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.
► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.</description><subject>Coefficients</subject><subject>Deduction</subject><subject>Deformation</subject><subject>Division</subject><subject>Entropy</subject><subject>Multiplication</subject><subject>Nonextensivity</subject><subject>Qantum statistical mechanics</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BGVvnlpnkjZpbsqiq7DgRc8hJlPM0m27SSusv94uq2dPw8D3HryPsRuEHAHl3SbvP_epocHmHBBzUDkAnrAZVkpkvOD6lM1AqDLTEvCcXaS0gYmQoGfsekUtRduEb_KL3WjbYdwuqB1i1wdKl-ystk2iq987Z-9Pj2_L52z9unpZPqwzJzQfMq8s6Uoq4pVWUAjrRQHEa6dKIIfOoyuErrQUwIX4qBAkYgW-rLifXi3m7PbY28duN1IazDYkR01jW-rGZDQWksuiFBMpj6SLXUqRatPHsLVxbxDMQYfZmD8d5qDDgDLT2Cl4fwzStOMrUDTJBWod-RDJDcZ34b-KH1x5anU</recordid><startdate>20110815</startdate><enddate>20110815</enddate><creator>Santos, A.P.</creator><creator>Silva, R.</creator><creator>Alcaniz, J.S.</creator><creator>Anselmo, D.H.A.L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110815</creationdate><title>Generalized quantum entropies</title><author>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d7ae9867e2897043ad340e2fc750ec1cd1c43989630233b81061180d582d3b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficients</topic><topic>Deduction</topic><topic>Deformation</topic><topic>Division</topic><topic>Entropy</topic><topic>Multiplication</topic><topic>Nonextensivity</topic><topic>Qantum statistical mechanics</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, A.P.</creatorcontrib><creatorcontrib>Silva, R.</creatorcontrib><creatorcontrib>Alcaniz, J.S.</creatorcontrib><creatorcontrib>Anselmo, D.H.A.L.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, A.P.</au><au>Silva, R.</au><au>Alcaniz, J.S.</au><au>Anselmo, D.H.A.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized quantum entropies</atitle><jtitle>Physics letters. A</jtitle><date>2011-08-15</date><risdate>2011</risdate><volume>375</volume><issue>35</issue><spage>3119</spage><epage>3123</epage><pages>3119-3123</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.
► Derivation of generalized quantum entropies. ► Generalized combinatorial method. ► Non-Gaussian quantum statistics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2011.07.001</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2011-08, Vol.375 (35), p.3119-3123 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_proquest_miscellaneous_914626453 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Coefficients Deduction Deformation Division Entropy Multiplication Nonextensivity Qantum statistical mechanics Solid state physics |
title | Generalized quantum entropies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20quantum%20entropies&rft.jtitle=Physics%20letters.%20A&rft.au=Santos,%20A.P.&rft.date=2011-08-15&rft.volume=375&rft.issue=35&rft.spage=3119&rft.epage=3123&rft.pages=3119-3123&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2011.07.001&rft_dat=%3Cproquest_cross%3E914626453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914626453&rft_id=info:pmid/&rft_els_id=S0375960111008292&rfr_iscdi=true |