Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum
Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum ( T. harzianum ) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are...
Gespeichert in:
Veröffentlicht in: | European biophysics journal 2012, Vol.41 (1), p.89-98 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | European biophysics journal |
container_volume | 41 |
creator | Colussi, Francieli Garcia, Wanius Rosseto, Flávio Rodolfo de Mello, Bruno Luan Soares de Oliveira Neto, Mário Polikarpov, Igor |
description | Due to its elevated cellulolytic activity, the filamentous fungus
Trichoderma harzianum
(
T. harzianum
) has considerable potential in biomass hydrolysis application. Cellulases from
Trichoderma reesei
have been widely used in studies of cellulose breakdown. However, cellulases from
T. harzianum
are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from
T. harzianum
(
Th
Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect
Th
Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of
Th
Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of
Th
Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of
Th
Cel7A at different pH and temperature conditions. |
doi_str_mv | 10.1007/s00249-011-0762-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_913719472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551548521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-72a080ceb36f13fd0279137a5cc04f24791fad22aadb0d791f840dac021fb8bc3</originalsourceid><addsrcrecordid>eNp9kUtP3DAURq2qCAbKD-imsropC0KvHWecWaIRLwmJDayjGz-YoCRObQdpuu__rt0BKlWiG1vXPvf48RHymcEZA5DfAwAXqwIYK0AueVF_IAsmSl4wYPIjWaSxKmQl2QE5DOEJQFSM1fvkgHMQdbWUC_LrwlqjInWWTtcUR02jGSbjMc7eUDfSuDH0sXct9lS5YUIVRxPCKQ3RzypDp3-60nr33MVtFinTp4bObbbaux6DoWvTy3NqvRvove_UxmnjB6Qb9D87HOfhE9mz2Adz_DIfkYfLi_v1dXF7d3WzPr8tlIAyFpIj1KBMWy4tK60GLleslFgpBcJykSqLmnNE3YLOVS1AowLObFu3qjwi33beybsfswmxGbqQr4ujcXNoso2thOSJPPkvmX6YceArkdGv_6BPbvZjekf2lZxBuUwQ20HKuxC8sc3kuwH9NpmaHGazC7NJ3iaH2dSp58uLeG4Ho986XtNLAN8BIW2Nj8b_Pfl962-ADqq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913321036</pqid></control><display><type>article</type><title>Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Colussi, Francieli ; Garcia, Wanius ; Rosseto, Flávio Rodolfo ; de Mello, Bruno Luan Soares ; de Oliveira Neto, Mário ; Polikarpov, Igor</creator><creatorcontrib>Colussi, Francieli ; Garcia, Wanius ; Rosseto, Flávio Rodolfo ; de Mello, Bruno Luan Soares ; de Oliveira Neto, Mário ; Polikarpov, Igor</creatorcontrib><description>Due to its elevated cellulolytic activity, the filamentous fungus
Trichoderma harzianum
(
T. harzianum
) has considerable potential in biomass hydrolysis application. Cellulases from
Trichoderma reesei
have been widely used in studies of cellulose breakdown. However, cellulases from
T. harzianum
are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from
T. harzianum
(
Th
Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect
Th
Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of
Th
Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of
Th
Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of
Th
Cel7A at different pH and temperature conditions.</description><identifier>ISSN: 0175-7571</identifier><identifier>EISSN: 1432-1017</identifier><identifier>DOI: 10.1007/s00249-011-0762-8</identifier><identifier>PMID: 22048567</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomass ; Biomedical and Life Sciences ; Biophysics ; Cell Biology ; cellobiohydrolase ; cellobiose ; Cellobiose - metabolism ; Cellulase ; Cellulose ; Cellulose 1,4-beta-Cellobiosidase - chemistry ; Cellulose 1,4-beta-Cellobiosidase - metabolism ; Enzymatic activity ; Enzyme Stability ; Hydrogen-Ion Concentration ; Hydrolysis ; Hypocrea jecorina ; Life Sciences ; Membrane Biology ; Mobility ; Nanotechnology ; Neurobiology ; Original Paper ; pH effects ; Protein structure ; Temperature ; Temperature effects ; Tertiary structure ; Thermal stability ; Trichoderma - enzymology ; Trichoderma harzianum</subject><ispartof>European biophysics journal, 2012, Vol.41 (1), p.89-98</ispartof><rights>European Biophysical Societies' Association 2011</rights><rights>European Biophysical Societies' Association 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-72a080ceb36f13fd0279137a5cc04f24791fad22aadb0d791f840dac021fb8bc3</citedby><cites>FETCH-LOGICAL-c403t-72a080ceb36f13fd0279137a5cc04f24791fad22aadb0d791f840dac021fb8bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00249-011-0762-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00249-011-0762-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22048567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colussi, Francieli</creatorcontrib><creatorcontrib>Garcia, Wanius</creatorcontrib><creatorcontrib>Rosseto, Flávio Rodolfo</creatorcontrib><creatorcontrib>de Mello, Bruno Luan Soares</creatorcontrib><creatorcontrib>de Oliveira Neto, Mário</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><title>Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum</title><title>European biophysics journal</title><addtitle>Eur Biophys J</addtitle><addtitle>Eur Biophys J</addtitle><description>Due to its elevated cellulolytic activity, the filamentous fungus
Trichoderma harzianum
(
T. harzianum
) has considerable potential in biomass hydrolysis application. Cellulases from
Trichoderma reesei
have been widely used in studies of cellulose breakdown. However, cellulases from
T. harzianum
are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from
T. harzianum
(
Th
Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect
Th
Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of
Th
Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of
Th
Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of
Th
Cel7A at different pH and temperature conditions.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>cellobiohydrolase</subject><subject>cellobiose</subject><subject>Cellobiose - metabolism</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulose 1,4-beta-Cellobiosidase - chemistry</subject><subject>Cellulose 1,4-beta-Cellobiosidase - metabolism</subject><subject>Enzymatic activity</subject><subject>Enzyme Stability</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Hypocrea jecorina</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mobility</subject><subject>Nanotechnology</subject><subject>Neurobiology</subject><subject>Original Paper</subject><subject>pH effects</subject><subject>Protein structure</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Tertiary structure</subject><subject>Thermal stability</subject><subject>Trichoderma - enzymology</subject><subject>Trichoderma harzianum</subject><issn>0175-7571</issn><issn>1432-1017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtP3DAURq2qCAbKD-imsropC0KvHWecWaIRLwmJDayjGz-YoCRObQdpuu__rt0BKlWiG1vXPvf48RHymcEZA5DfAwAXqwIYK0AueVF_IAsmSl4wYPIjWaSxKmQl2QE5DOEJQFSM1fvkgHMQdbWUC_LrwlqjInWWTtcUR02jGSbjMc7eUDfSuDH0sXct9lS5YUIVRxPCKQ3RzypDp3-60nr33MVtFinTp4bObbbaux6DoWvTy3NqvRvove_UxmnjB6Qb9D87HOfhE9mz2Adz_DIfkYfLi_v1dXF7d3WzPr8tlIAyFpIj1KBMWy4tK60GLleslFgpBcJykSqLmnNE3YLOVS1AowLObFu3qjwi33beybsfswmxGbqQr4ujcXNoso2thOSJPPkvmX6YceArkdGv_6BPbvZjekf2lZxBuUwQ20HKuxC8sc3kuwH9NpmaHGazC7NJ3iaH2dSp58uLeG4Ho986XtNLAN8BIW2Nj8b_Pfl962-ADqq0</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Colussi, Francieli</creator><creator>Garcia, Wanius</creator><creator>Rosseto, Flávio Rodolfo</creator><creator>de Mello, Bruno Luan Soares</creator><creator>de Oliveira Neto, Mário</creator><creator>Polikarpov, Igor</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2012</creationdate><title>Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum</title><author>Colussi, Francieli ; Garcia, Wanius ; Rosseto, Flávio Rodolfo ; de Mello, Bruno Luan Soares ; de Oliveira Neto, Mário ; Polikarpov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-72a080ceb36f13fd0279137a5cc04f24791fad22aadb0d791f840dac021fb8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>cellobiohydrolase</topic><topic>cellobiose</topic><topic>Cellobiose - metabolism</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulose 1,4-beta-Cellobiosidase - chemistry</topic><topic>Cellulose 1,4-beta-Cellobiosidase - metabolism</topic><topic>Enzymatic activity</topic><topic>Enzyme Stability</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Hypocrea jecorina</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mobility</topic><topic>Nanotechnology</topic><topic>Neurobiology</topic><topic>Original Paper</topic><topic>pH effects</topic><topic>Protein structure</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Tertiary structure</topic><topic>Thermal stability</topic><topic>Trichoderma - enzymology</topic><topic>Trichoderma harzianum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colussi, Francieli</creatorcontrib><creatorcontrib>Garcia, Wanius</creatorcontrib><creatorcontrib>Rosseto, Flávio Rodolfo</creatorcontrib><creatorcontrib>de Mello, Bruno Luan Soares</creatorcontrib><creatorcontrib>de Oliveira Neto, Mário</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>European biophysics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colussi, Francieli</au><au>Garcia, Wanius</au><au>Rosseto, Flávio Rodolfo</au><au>de Mello, Bruno Luan Soares</au><au>de Oliveira Neto, Mário</au><au>Polikarpov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum</atitle><jtitle>European biophysics journal</jtitle><stitle>Eur Biophys J</stitle><addtitle>Eur Biophys J</addtitle><date>2012</date><risdate>2012</risdate><volume>41</volume><issue>1</issue><spage>89</spage><epage>98</epage><pages>89-98</pages><issn>0175-7571</issn><eissn>1432-1017</eissn><abstract>Due to its elevated cellulolytic activity, the filamentous fungus
Trichoderma harzianum
(
T. harzianum
) has considerable potential in biomass hydrolysis application. Cellulases from
Trichoderma reesei
have been widely used in studies of cellulose breakdown. However, cellulases from
T. harzianum
are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from
T. harzianum
(
Th
Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect
Th
Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of
Th
Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of
Th
Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of
Th
Cel7A at different pH and temperature conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22048567</pmid><doi>10.1007/s00249-011-0762-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7571 |
ispartof | European biophysics journal, 2012, Vol.41 (1), p.89-98 |
issn | 0175-7571 1432-1017 |
language | eng |
recordid | cdi_proquest_miscellaneous_913719472 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biomass Biomedical and Life Sciences Biophysics Cell Biology cellobiohydrolase cellobiose Cellobiose - metabolism Cellulase Cellulose Cellulose 1,4-beta-Cellobiosidase - chemistry Cellulose 1,4-beta-Cellobiosidase - metabolism Enzymatic activity Enzyme Stability Hydrogen-Ion Concentration Hydrolysis Hypocrea jecorina Life Sciences Membrane Biology Mobility Nanotechnology Neurobiology Original Paper pH effects Protein structure Temperature Temperature effects Tertiary structure Thermal stability Trichoderma - enzymology Trichoderma harzianum |
title | Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pH%20and%20temperature%20on%20the%20global%20compactness,%20structure,%20and%20activity%20of%20cellobiohydrolase%20Cel7A%20from%20Trichoderma%20harzianum&rft.jtitle=European%20biophysics%20journal&rft.au=Colussi,%20Francieli&rft.date=2012&rft.volume=41&rft.issue=1&rft.spage=89&rft.epage=98&rft.pages=89-98&rft.issn=0175-7571&rft.eissn=1432-1017&rft_id=info:doi/10.1007/s00249-011-0762-8&rft_dat=%3Cproquest_cross%3E2551548521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913321036&rft_id=info:pmid/22048567&rfr_iscdi=true |