Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance
Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (P...
Gespeichert in:
Veröffentlicht in: | Planta 2012-01, Vol.235 (1), p.69-84 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Planta |
container_volume | 235 |
creator | Zhai, Shu-Mei Gao, Qiang Xue, Hong-Wei Sui, Zhen-Hua Yue, Gui-Dong Yang, Ai-Fang Zhang, Ju-Ren |
description | Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress. |
doi_str_mv | 10.1007/s00425-011-1490-0 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_913442558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23885023</jstor_id><sourcerecordid>23885023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</originalsourceid><addsrcrecordid>eNp9kcuO1DAQRSMEYpqBD2ABspAQbAJlO46T5WjESxppNrBhEzlOpdutJA4uZ0R_EP-JQze0xGJWtlTn3nrcLHvO4R0H0O8JoBAqB85zXtSQw4NswwspcgFF9TDbAKQ_1FJdZE-I9gCpqPXj7ELwSgJU9Sb7dXuHAX_OAYmcn5jvWdwhm3ee5p2JrjsMbvLkoh8YHaa4M4RsixOyPviRfUfDRnMg5iYWfWus9WwezBSJmSFioD9uI45tMEkzuNl1xKwf59VzbWimjrlxDv4OiXXBL9tdZBTXeZLjgEln8Wn2qDcD4bPTe5l9-_jh6_Xn_Ob205frq5vcFkrFXLdGaW66WlhpoehVn_YstezbrlK6bTtRl4BYVm1VqhY61EVh0GhQta3RlPIye3P0TfP8WJBiMzqyOKSN0C_U1FwW6eKqSuTbe0kOogJRSlAJffUfuvdLmNIeqx_XpSjrBPEjZIMnCtg3c3CjCYfk1KxhN8ewmxR2s4bdQNK8PBkv7YjdP8XfdBPw-gQYsmbo11s6OnNKlboq12XEkaNUmrYYzhPe1_3FUbSn6MPZVFaVAiHlb5JRzw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913176269</pqid></control><display><type>article</type><title>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhai, Shu-Mei ; Gao, Qiang ; Xue, Hong-Wei ; Sui, Zhen-Hua ; Yue, Gui-Dong ; Yang, Ai-Fang ; Zhang, Ju-Ren</creator><creatorcontrib>Zhai, Shu-Mei ; Gao, Qiang ; Xue, Hong-Wei ; Sui, Zhen-Hua ; Yue, Gui-Dong ; Yang, Ai-Fang ; Zhang, Ju-Ren</creatorcontrib><description>Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1490-0</identifier><identifier>PMID: 21830089</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Adaptation, Physiological - genetics ; Agriculture ; AL gene ; Amino acids ; Biological and medical sciences ; Biomedical and Life Sciences ; CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis ; CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics ; CDPdiacylglycerol-inositol-3-phosphatidyltransferase ; Corn ; Dehydration - metabolism ; Drought ; Drought resistance ; Ecology ; Forestry ; Fundamental and applied biological sciences. Psychology ; Galactolipids - biosynthesis ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Engineering ; Haploidy ; Leaves ; Life Sciences ; Lipid composition ; Lipids ; Membrane Lipids - biosynthesis ; Membrane Lipids - metabolism ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - metabolism ; Original Article ; Osmotic Pressure - physiology ; Osmotic stress ; phosphatidylinositol ; Phosphatidylinositols ; Phospholipids ; Phospholipids - biosynthesis ; Plant Sciences ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Solutes ; Tobacco ; Transcription ; Transgenic plants ; Yeasts ; Zea mays ; Zea mays - enzymology ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Planta, 2012-01, Vol.235 (1), p.69-84</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</citedby><cites>FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23885023$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23885023$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,4009,27902,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25567868$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21830089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Shu-Mei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xue, Hong-Wei</creatorcontrib><creatorcontrib>Sui, Zhen-Hua</creatorcontrib><creatorcontrib>Yue, Gui-Dong</creatorcontrib><creatorcontrib>Yang, Ai-Fang</creatorcontrib><creatorcontrib>Zhang, Ju-Ren</creatorcontrib><title>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.</description><subject>Adaptation, Physiological - genetics</subject><subject>Agriculture</subject><subject>AL gene</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis</subject><subject>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics</subject><subject>CDPdiacylglycerol-inositol-3-phosphatidyltransferase</subject><subject>Corn</subject><subject>Dehydration - metabolism</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galactolipids - biosynthesis</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic Engineering</subject><subject>Haploidy</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Lipid composition</subject><subject>Lipids</subject><subject>Membrane Lipids - biosynthesis</subject><subject>Membrane Lipids - metabolism</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Original Article</subject><subject>Osmotic Pressure - physiology</subject><subject>Osmotic stress</subject><subject>phosphatidylinositol</subject><subject>Phosphatidylinositols</subject><subject>Phospholipids</subject><subject>Phospholipids - biosynthesis</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Solutes</subject><subject>Tobacco</subject><subject>Transcription</subject><subject>Transgenic plants</subject><subject>Yeasts</subject><subject>Zea mays</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcuO1DAQRSMEYpqBD2ABspAQbAJlO46T5WjESxppNrBhEzlOpdutJA4uZ0R_EP-JQze0xGJWtlTn3nrcLHvO4R0H0O8JoBAqB85zXtSQw4NswwspcgFF9TDbAKQ_1FJdZE-I9gCpqPXj7ELwSgJU9Sb7dXuHAX_OAYmcn5jvWdwhm3ee5p2JrjsMbvLkoh8YHaa4M4RsixOyPviRfUfDRnMg5iYWfWus9WwezBSJmSFioD9uI45tMEkzuNl1xKwf59VzbWimjrlxDv4OiXXBL9tdZBTXeZLjgEln8Wn2qDcD4bPTe5l9-_jh6_Xn_Ob205frq5vcFkrFXLdGaW66WlhpoehVn_YstezbrlK6bTtRl4BYVm1VqhY61EVh0GhQta3RlPIye3P0TfP8WJBiMzqyOKSN0C_U1FwW6eKqSuTbe0kOogJRSlAJffUfuvdLmNIeqx_XpSjrBPEjZIMnCtg3c3CjCYfk1KxhN8ewmxR2s4bdQNK8PBkv7YjdP8XfdBPw-gQYsmbo11s6OnNKlboq12XEkaNUmrYYzhPe1_3FUbSn6MPZVFaVAiHlb5JRzw0</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zhai, Shu-Mei</creator><creator>Gao, Qiang</creator><creator>Xue, Hong-Wei</creator><creator>Sui, Zhen-Hua</creator><creator>Yue, Gui-Dong</creator><creator>Yang, Ai-Fang</creator><creator>Zhang, Ju-Ren</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</title><author>Zhai, Shu-Mei ; Gao, Qiang ; Xue, Hong-Wei ; Sui, Zhen-Hua ; Yue, Gui-Dong ; Yang, Ai-Fang ; Zhang, Ju-Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Agriculture</topic><topic>AL gene</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis</topic><topic>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics</topic><topic>CDPdiacylglycerol-inositol-3-phosphatidyltransferase</topic><topic>Corn</topic><topic>Dehydration - metabolism</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galactolipids - biosynthesis</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic Engineering</topic><topic>Haploidy</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Lipid composition</topic><topic>Lipids</topic><topic>Membrane Lipids - biosynthesis</topic><topic>Membrane Lipids - metabolism</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Original Article</topic><topic>Osmotic Pressure - physiology</topic><topic>Osmotic stress</topic><topic>phosphatidylinositol</topic><topic>Phosphatidylinositols</topic><topic>Phospholipids</topic><topic>Phospholipids - biosynthesis</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Solutes</topic><topic>Tobacco</topic><topic>Transcription</topic><topic>Transgenic plants</topic><topic>Yeasts</topic><topic>Zea mays</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Shu-Mei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xue, Hong-Wei</creatorcontrib><creatorcontrib>Sui, Zhen-Hua</creatorcontrib><creatorcontrib>Yue, Gui-Dong</creatorcontrib><creatorcontrib>Yang, Ai-Fang</creatorcontrib><creatorcontrib>Zhang, Ju-Ren</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Shu-Mei</au><au>Gao, Qiang</au><au>Xue, Hong-Wei</au><au>Sui, Zhen-Hua</au><au>Yue, Gui-Dong</au><au>Yang, Ai-Fang</au><au>Zhang, Ju-Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>235</volume><issue>1</issue><spage>69</spage><epage>84</epage><pages>69-84</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>21830089</pmid><doi>10.1007/s00425-011-1490-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2012-01, Vol.235 (1), p.69-84 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_913442558 |
source | Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adaptation, Physiological - genetics Agriculture AL gene Amino acids Biological and medical sciences Biomedical and Life Sciences CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics CDPdiacylglycerol-inositol-3-phosphatidyltransferase Corn Dehydration - metabolism Drought Drought resistance Ecology Forestry Fundamental and applied biological sciences. Psychology Galactolipids - biosynthesis Gene Expression Regulation, Plant Genes, Plant Genetic Engineering Haploidy Leaves Life Sciences Lipid composition Lipids Membrane Lipids - biosynthesis Membrane Lipids - metabolism Nicotiana - enzymology Nicotiana - genetics Nicotiana - metabolism Original Article Osmotic Pressure - physiology Osmotic stress phosphatidylinositol Phosphatidylinositols Phospholipids Phospholipids - biosynthesis Plant Sciences Plants Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Solutes Tobacco Transcription Transgenic plants Yeasts Zea mays Zea mays - enzymology Zea mays - genetics Zea mays - metabolism |
title | Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20the%20phosphatidylinositol%20synthase%20gene%20from%20Zea%20mays%20in%20tobacco%20plants%20alters%20the%20membrane%20lipids%20composition%20and%20improves%20drought%20stress%20tolerance&rft.jtitle=Planta&rft.au=Zhai,%20Shu-Mei&rft.date=2012-01-01&rft.volume=235&rft.issue=1&rft.spage=69&rft.epage=84&rft.pages=69-84&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1490-0&rft_dat=%3Cjstor_proqu%3E23885023%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913176269&rft_id=info:pmid/21830089&rft_jstor_id=23885023&rfr_iscdi=true |