Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance

Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2012-01, Vol.235 (1), p.69-84
Hauptverfasser: Zhai, Shu-Mei, Gao, Qiang, Xue, Hong-Wei, Sui, Zhen-Hua, Yue, Gui-Dong, Yang, Ai-Fang, Zhang, Ju-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 69
container_title Planta
container_volume 235
creator Zhai, Shu-Mei
Gao, Qiang
Xue, Hong-Wei
Sui, Zhen-Hua
Yue, Gui-Dong
Yang, Ai-Fang
Zhang, Ju-Ren
description Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.
doi_str_mv 10.1007/s00425-011-1490-0
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_913442558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23885023</jstor_id><sourcerecordid>23885023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</originalsourceid><addsrcrecordid>eNp9kcuO1DAQRSMEYpqBD2ABspAQbAJlO46T5WjESxppNrBhEzlOpdutJA4uZ0R_EP-JQze0xGJWtlTn3nrcLHvO4R0H0O8JoBAqB85zXtSQw4NswwspcgFF9TDbAKQ_1FJdZE-I9gCpqPXj7ELwSgJU9Sb7dXuHAX_OAYmcn5jvWdwhm3ee5p2JrjsMbvLkoh8YHaa4M4RsixOyPviRfUfDRnMg5iYWfWus9WwezBSJmSFioD9uI45tMEkzuNl1xKwf59VzbWimjrlxDv4OiXXBL9tdZBTXeZLjgEln8Wn2qDcD4bPTe5l9-_jh6_Xn_Ob205frq5vcFkrFXLdGaW66WlhpoehVn_YstezbrlK6bTtRl4BYVm1VqhY61EVh0GhQta3RlPIye3P0TfP8WJBiMzqyOKSN0C_U1FwW6eKqSuTbe0kOogJRSlAJffUfuvdLmNIeqx_XpSjrBPEjZIMnCtg3c3CjCYfk1KxhN8ewmxR2s4bdQNK8PBkv7YjdP8XfdBPw-gQYsmbo11s6OnNKlboq12XEkaNUmrYYzhPe1_3FUbSn6MPZVFaVAiHlb5JRzw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913176269</pqid></control><display><type>article</type><title>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhai, Shu-Mei ; Gao, Qiang ; Xue, Hong-Wei ; Sui, Zhen-Hua ; Yue, Gui-Dong ; Yang, Ai-Fang ; Zhang, Ju-Ren</creator><creatorcontrib>Zhai, Shu-Mei ; Gao, Qiang ; Xue, Hong-Wei ; Sui, Zhen-Hua ; Yue, Gui-Dong ; Yang, Ai-Fang ; Zhang, Ju-Ren</creatorcontrib><description>Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1490-0</identifier><identifier>PMID: 21830089</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Adaptation, Physiological - genetics ; Agriculture ; AL gene ; Amino acids ; Biological and medical sciences ; Biomedical and Life Sciences ; CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis ; CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics ; CDPdiacylglycerol-inositol-3-phosphatidyltransferase ; Corn ; Dehydration - metabolism ; Drought ; Drought resistance ; Ecology ; Forestry ; Fundamental and applied biological sciences. Psychology ; Galactolipids - biosynthesis ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Engineering ; Haploidy ; Leaves ; Life Sciences ; Lipid composition ; Lipids ; Membrane Lipids - biosynthesis ; Membrane Lipids - metabolism ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - metabolism ; Original Article ; Osmotic Pressure - physiology ; Osmotic stress ; phosphatidylinositol ; Phosphatidylinositols ; Phospholipids ; Phospholipids - biosynthesis ; Plant Sciences ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Solutes ; Tobacco ; Transcription ; Transgenic plants ; Yeasts ; Zea mays ; Zea mays - enzymology ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Planta, 2012-01, Vol.235 (1), p.69-84</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</citedby><cites>FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23885023$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23885023$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,4009,27902,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25567868$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21830089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Shu-Mei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xue, Hong-Wei</creatorcontrib><creatorcontrib>Sui, Zhen-Hua</creatorcontrib><creatorcontrib>Yue, Gui-Dong</creatorcontrib><creatorcontrib>Yang, Ai-Fang</creatorcontrib><creatorcontrib>Zhang, Ju-Ren</creatorcontrib><title>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.</description><subject>Adaptation, Physiological - genetics</subject><subject>Agriculture</subject><subject>AL gene</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis</subject><subject>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics</subject><subject>CDPdiacylglycerol-inositol-3-phosphatidyltransferase</subject><subject>Corn</subject><subject>Dehydration - metabolism</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galactolipids - biosynthesis</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic Engineering</subject><subject>Haploidy</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Lipid composition</subject><subject>Lipids</subject><subject>Membrane Lipids - biosynthesis</subject><subject>Membrane Lipids - metabolism</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Original Article</subject><subject>Osmotic Pressure - physiology</subject><subject>Osmotic stress</subject><subject>phosphatidylinositol</subject><subject>Phosphatidylinositols</subject><subject>Phospholipids</subject><subject>Phospholipids - biosynthesis</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Solutes</subject><subject>Tobacco</subject><subject>Transcription</subject><subject>Transgenic plants</subject><subject>Yeasts</subject><subject>Zea mays</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcuO1DAQRSMEYpqBD2ABspAQbAJlO46T5WjESxppNrBhEzlOpdutJA4uZ0R_EP-JQze0xGJWtlTn3nrcLHvO4R0H0O8JoBAqB85zXtSQw4NswwspcgFF9TDbAKQ_1FJdZE-I9gCpqPXj7ELwSgJU9Sb7dXuHAX_OAYmcn5jvWdwhm3ee5p2JrjsMbvLkoh8YHaa4M4RsixOyPviRfUfDRnMg5iYWfWus9WwezBSJmSFioD9uI45tMEkzuNl1xKwf59VzbWimjrlxDv4OiXXBL9tdZBTXeZLjgEln8Wn2qDcD4bPTe5l9-_jh6_Xn_Ob205frq5vcFkrFXLdGaW66WlhpoehVn_YstezbrlK6bTtRl4BYVm1VqhY61EVh0GhQta3RlPIye3P0TfP8WJBiMzqyOKSN0C_U1FwW6eKqSuTbe0kOogJRSlAJffUfuvdLmNIeqx_XpSjrBPEjZIMnCtg3c3CjCYfk1KxhN8ewmxR2s4bdQNK8PBkv7YjdP8XfdBPw-gQYsmbo11s6OnNKlboq12XEkaNUmrYYzhPe1_3FUbSn6MPZVFaVAiHlb5JRzw0</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zhai, Shu-Mei</creator><creator>Gao, Qiang</creator><creator>Xue, Hong-Wei</creator><creator>Sui, Zhen-Hua</creator><creator>Yue, Gui-Dong</creator><creator>Yang, Ai-Fang</creator><creator>Zhang, Ju-Ren</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</title><author>Zhai, Shu-Mei ; Gao, Qiang ; Xue, Hong-Wei ; Sui, Zhen-Hua ; Yue, Gui-Dong ; Yang, Ai-Fang ; Zhang, Ju-Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-7ba571ad92c3c04f5f183673fbd857bbd2960ee68b865b0de744aea7059c9ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Agriculture</topic><topic>AL gene</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis</topic><topic>CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics</topic><topic>CDPdiacylglycerol-inositol-3-phosphatidyltransferase</topic><topic>Corn</topic><topic>Dehydration - metabolism</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galactolipids - biosynthesis</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic Engineering</topic><topic>Haploidy</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Lipid composition</topic><topic>Lipids</topic><topic>Membrane Lipids - biosynthesis</topic><topic>Membrane Lipids - metabolism</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Original Article</topic><topic>Osmotic Pressure - physiology</topic><topic>Osmotic stress</topic><topic>phosphatidylinositol</topic><topic>Phosphatidylinositols</topic><topic>Phospholipids</topic><topic>Phospholipids - biosynthesis</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Solutes</topic><topic>Tobacco</topic><topic>Transcription</topic><topic>Transgenic plants</topic><topic>Yeasts</topic><topic>Zea mays</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Shu-Mei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xue, Hong-Wei</creatorcontrib><creatorcontrib>Sui, Zhen-Hua</creatorcontrib><creatorcontrib>Yue, Gui-Dong</creatorcontrib><creatorcontrib>Yang, Ai-Fang</creatorcontrib><creatorcontrib>Zhang, Ju-Ren</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Shu-Mei</au><au>Gao, Qiang</au><au>Xue, Hong-Wei</au><au>Sui, Zhen-Hua</au><au>Yue, Gui-Dong</au><au>Yang, Ai-Fang</au><au>Zhang, Ju-Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>235</volume><issue>1</issue><spage>69</spage><epage>84</epage><pages>69-84</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56,2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>21830089</pmid><doi>10.1007/s00425-011-1490-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2012-01, Vol.235 (1), p.69-84
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_913442558
source Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals
subjects Adaptation, Physiological - genetics
Agriculture
AL gene
Amino acids
Biological and medical sciences
Biomedical and Life Sciences
CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - biosynthesis
CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase - genetics
CDPdiacylglycerol-inositol-3-phosphatidyltransferase
Corn
Dehydration - metabolism
Drought
Drought resistance
Ecology
Forestry
Fundamental and applied biological sciences. Psychology
Galactolipids - biosynthesis
Gene Expression Regulation, Plant
Genes, Plant
Genetic Engineering
Haploidy
Leaves
Life Sciences
Lipid composition
Lipids
Membrane Lipids - biosynthesis
Membrane Lipids - metabolism
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana - metabolism
Original Article
Osmotic Pressure - physiology
Osmotic stress
phosphatidylinositol
Phosphatidylinositols
Phospholipids
Phospholipids - biosynthesis
Plant Sciences
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Solutes
Tobacco
Transcription
Transgenic plants
Yeasts
Zea mays
Zea mays - enzymology
Zea mays - genetics
Zea mays - metabolism
title Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20the%20phosphatidylinositol%20synthase%20gene%20from%20Zea%20mays%20in%20tobacco%20plants%20alters%20the%20membrane%20lipids%20composition%20and%20improves%20drought%20stress%20tolerance&rft.jtitle=Planta&rft.au=Zhai,%20Shu-Mei&rft.date=2012-01-01&rft.volume=235&rft.issue=1&rft.spage=69&rft.epage=84&rft.pages=69-84&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1490-0&rft_dat=%3Cjstor_proqu%3E23885023%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913176269&rft_id=info:pmid/21830089&rft_jstor_id=23885023&rfr_iscdi=true