Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat

To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2012-02, Vol.361 (1-2), p.305-314
Hauptverfasser: Xie, Shuyang, Xie, Ning, Li, Youjie, Wang, Pingyu, Zhang, Chao, Li, Qiang, Liu, Xiaolin, Deng, Jingti, Zhang, Can, Lv, Changjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 1-2
container_start_page 305
container_title Molecular and cellular biochemistry
container_volume 361
creator Xie, Shuyang
Xie, Ning
Li, Youjie
Wang, Pingyu
Zhang, Chao
Li, Qiang
Liu, Xiaolin
Deng, Jingti
Zhang, Can
Lv, Changjun
description To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection. GFP expression in RAOEC cells (rat vascular aortic endothelial cell)were detected by flow cytometry and fluorescent microscope. TRB2 gene expression was increased in endothelia cell and the adventitia of Goto-Kakizaki (GK) rat compared with Wistar rat. Next, studies using RAOEC cells showed that the TRB2 expression was inhibited by the treatment of miR-98. We further showed that the expression of miR-98 was significantly decreased in the adventitia and endomembrane at different degrees in GK rats compared with control. Finally, we validated the changes in TRB2 by studying one of the TRB2’s substrates, Akt, in animal models. We expected a corresponding change in the levels of phosphorylated Akt. Indeed, our results showed that the phosphorylation of Akt at Thr 308 in the endothelial cells and phosphorylation of Akt at Ser 473 in adventitia was decreased in GK rats, compared with Wistar control. TRB2 plays important roles in the pathogenesis of diabetic-2 large artery complications at early stage, and these effects may be modulated by miR-98. Thus, targeting TRB2 and miR-98 could be considered as novel therapeutic strategies for the early large artery deficits in diabetic-2.
doi_str_mv 10.1007/s11010-011-1116-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_913032488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358998701</galeid><sourcerecordid>A358998701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-52e9a2aca95b81b78694fb80adc555cf41fe4f0b0ac7822cffe0aead70fbb3be3</originalsourceid><addsrcrecordid>eNp10c-L1TAQB_Agivtc_QO8SNCDp6wzafuSHtfFX7AgLLvnkKSTZ5a-9pm0h_73pnRVFCWHkOQzw4QvYy8RLhBAvcuIgCAAUSDiXqhHbIeNqkTdYvuY7aACEBqVOmPPcr6Hgot9ys6kBJR7rHbM3Z0SHebeTnEc-Bj47c17yePQzZ467hZ-jDei1eWGT9-Ik039wnvKReeV9zYdiNs0UVrW87ScSEjeRetoip4nOz1nT4LtM7142M_Z3ccPt1efxfXXT1-uLq-Fb5SaRCOptdJ62zZOo1N639bBabCdb5rGhxoD1QEcWK-0lD4EAku2UxCcqxxV5-zt1veUxu8z5ckcY_bU93agcc6mxQoqWWtd5Ou_5P04p6EMV5DUKOumLujNhg62JxOHME7J-rWluawa3bZaARZ18Q9VVkfH6MeBQiz3fxTgVuDTmHOiYE4pHm1aDIJZUzVbqqYkZdZUjSo1rx7mnd2Rul8VP2MsQG4gl6fhQOn3h_7f9Qebb6pJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912812454</pqid></control><display><type>article</type><title>Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Xie, Shuyang ; Xie, Ning ; Li, Youjie ; Wang, Pingyu ; Zhang, Chao ; Li, Qiang ; Liu, Xiaolin ; Deng, Jingti ; Zhang, Can ; Lv, Changjun</creator><creatorcontrib>Xie, Shuyang ; Xie, Ning ; Li, Youjie ; Wang, Pingyu ; Zhang, Chao ; Li, Qiang ; Liu, Xiaolin ; Deng, Jingti ; Zhang, Can ; Lv, Changjun</creatorcontrib><description>To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection. GFP expression in RAOEC cells (rat vascular aortic endothelial cell)were detected by flow cytometry and fluorescent microscope. TRB2 gene expression was increased in endothelia cell and the adventitia of Goto-Kakizaki (GK) rat compared with Wistar rat. Next, studies using RAOEC cells showed that the TRB2 expression was inhibited by the treatment of miR-98. We further showed that the expression of miR-98 was significantly decreased in the adventitia and endomembrane at different degrees in GK rats compared with control. Finally, we validated the changes in TRB2 by studying one of the TRB2’s substrates, Akt, in animal models. We expected a corresponding change in the levels of phosphorylated Akt. Indeed, our results showed that the phosphorylation of Akt at Thr 308 in the endothelial cells and phosphorylation of Akt at Ser 473 in adventitia was decreased in GK rats, compared with Wistar control. TRB2 plays important roles in the pathogenesis of diabetic-2 large artery complications at early stage, and these effects may be modulated by miR-98. Thus, targeting TRB2 and miR-98 could be considered as novel therapeutic strategies for the early large artery deficits in diabetic-2.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-011-1116-7</identifier><identifier>PMID: 22012613</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3' Untranslated Regions ; Animal models ; Animals ; Aorta - metabolism ; Aorta - pathology ; Aortic Diseases - etiology ; Aortic Diseases - genetics ; Aortic Diseases - metabolism ; Atherosclerosis - etiology ; Atherosclerosis - genetics ; Atherosclerosis - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Cardiology ; Cells, Cultured ; Comparative analysis ; Complications and side effects ; Diabetes ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - metabolism ; Diabetic Angiopathies - etiology ; Diabetic Angiopathies - genetics ; Diabetic Angiopathies - metabolism ; Endothelial Cells - metabolism ; Enzyme-linked immunosorbent assay ; Gene Expression ; Gene Expression Regulation ; Genes, Reporter ; Green Fluorescent Proteins - biosynthesis ; Green Fluorescent Proteins - genetics ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Life Sciences ; Male ; Medical Biochemistry ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Oncology ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Wistar ; Ribonucleic acid ; RNA ; Rodents ; Up-Regulation ; Veins &amp; arteries</subject><ispartof>Molecular and cellular biochemistry, 2012-02, Vol.361 (1-2), p.305-314</ispartof><rights>Springer Science+Business Media, LLC. 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media, LLC. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-52e9a2aca95b81b78694fb80adc555cf41fe4f0b0ac7822cffe0aead70fbb3be3</citedby><cites>FETCH-LOGICAL-c577t-52e9a2aca95b81b78694fb80adc555cf41fe4f0b0ac7822cffe0aead70fbb3be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11010-011-1116-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11010-011-1116-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22012613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Shuyang</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Li, Youjie</creatorcontrib><creatorcontrib>Wang, Pingyu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Liu, Xiaolin</creatorcontrib><creatorcontrib>Deng, Jingti</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Lv, Changjun</creatorcontrib><title>Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>Mol Cell Biochem</addtitle><description>To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection. GFP expression in RAOEC cells (rat vascular aortic endothelial cell)were detected by flow cytometry and fluorescent microscope. TRB2 gene expression was increased in endothelia cell and the adventitia of Goto-Kakizaki (GK) rat compared with Wistar rat. Next, studies using RAOEC cells showed that the TRB2 expression was inhibited by the treatment of miR-98. We further showed that the expression of miR-98 was significantly decreased in the adventitia and endomembrane at different degrees in GK rats compared with control. Finally, we validated the changes in TRB2 by studying one of the TRB2’s substrates, Akt, in animal models. We expected a corresponding change in the levels of phosphorylated Akt. Indeed, our results showed that the phosphorylation of Akt at Thr 308 in the endothelial cells and phosphorylation of Akt at Ser 473 in adventitia was decreased in GK rats, compared with Wistar control. TRB2 plays important roles in the pathogenesis of diabetic-2 large artery complications at early stage, and these effects may be modulated by miR-98. Thus, targeting TRB2 and miR-98 could be considered as novel therapeutic strategies for the early large artery deficits in diabetic-2.</description><subject>3' Untranslated Regions</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Aorta - pathology</subject><subject>Aortic Diseases - etiology</subject><subject>Aortic Diseases - genetics</subject><subject>Aortic Diseases - metabolism</subject><subject>Atherosclerosis - etiology</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cardiology</subject><subject>Cells, Cultured</subject><subject>Comparative analysis</subject><subject>Complications and side effects</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetic Angiopathies - etiology</subject><subject>Diabetic Angiopathies - genetics</subject><subject>Diabetic Angiopathies - metabolism</subject><subject>Endothelial Cells - metabolism</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medical Biochemistry</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Oncology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Up-Regulation</subject><subject>Veins &amp; arteries</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10c-L1TAQB_Agivtc_QO8SNCDp6wzafuSHtfFX7AgLLvnkKSTZ5a-9pm0h_73pnRVFCWHkOQzw4QvYy8RLhBAvcuIgCAAUSDiXqhHbIeNqkTdYvuY7aACEBqVOmPPcr6Hgot9ys6kBJR7rHbM3Z0SHebeTnEc-Bj47c17yePQzZ467hZ-jDei1eWGT9-Ik039wnvKReeV9zYdiNs0UVrW87ScSEjeRetoip4nOz1nT4LtM7142M_Z3ccPt1efxfXXT1-uLq-Fb5SaRCOptdJ62zZOo1N639bBabCdb5rGhxoD1QEcWK-0lD4EAku2UxCcqxxV5-zt1veUxu8z5ckcY_bU93agcc6mxQoqWWtd5Ou_5P04p6EMV5DUKOumLujNhg62JxOHME7J-rWluawa3bZaARZ18Q9VVkfH6MeBQiz3fxTgVuDTmHOiYE4pHm1aDIJZUzVbqqYkZdZUjSo1rx7mnd2Rul8VP2MsQG4gl6fhQOn3h_7f9Qebb6pJ</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Xie, Shuyang</creator><creator>Xie, Ning</creator><creator>Li, Youjie</creator><creator>Wang, Pingyu</creator><creator>Zhang, Chao</creator><creator>Li, Qiang</creator><creator>Liu, Xiaolin</creator><creator>Deng, Jingti</creator><creator>Zhang, Can</creator><creator>Lv, Changjun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat</title><author>Xie, Shuyang ; Xie, Ning ; Li, Youjie ; Wang, Pingyu ; Zhang, Chao ; Li, Qiang ; Liu, Xiaolin ; Deng, Jingti ; Zhang, Can ; Lv, Changjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-52e9a2aca95b81b78694fb80adc555cf41fe4f0b0ac7822cffe0aead70fbb3be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3' Untranslated Regions</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Aorta - pathology</topic><topic>Aortic Diseases - etiology</topic><topic>Aortic Diseases - genetics</topic><topic>Aortic Diseases - metabolism</topic><topic>Atherosclerosis - etiology</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cardiology</topic><topic>Cells, Cultured</topic><topic>Comparative analysis</topic><topic>Complications and side effects</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetic Angiopathies - etiology</topic><topic>Diabetic Angiopathies - genetics</topic><topic>Diabetic Angiopathies - metabolism</topic><topic>Endothelial Cells - metabolism</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medical Biochemistry</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Oncology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Up-Regulation</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shuyang</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Li, Youjie</creatorcontrib><creatorcontrib>Wang, Pingyu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Liu, Xiaolin</creatorcontrib><creatorcontrib>Deng, Jingti</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Lv, Changjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shuyang</au><au>Xie, Ning</au><au>Li, Youjie</au><au>Wang, Pingyu</au><au>Zhang, Chao</au><au>Li, Qiang</au><au>Liu, Xiaolin</au><au>Deng, Jingti</au><au>Zhang, Can</au><au>Lv, Changjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><addtitle>Mol Cell Biochem</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>361</volume><issue>1-2</issue><spage>305</spage><epage>314</epage><pages>305-314</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection. GFP expression in RAOEC cells (rat vascular aortic endothelial cell)were detected by flow cytometry and fluorescent microscope. TRB2 gene expression was increased in endothelia cell and the adventitia of Goto-Kakizaki (GK) rat compared with Wistar rat. Next, studies using RAOEC cells showed that the TRB2 expression was inhibited by the treatment of miR-98. We further showed that the expression of miR-98 was significantly decreased in the adventitia and endomembrane at different degrees in GK rats compared with control. Finally, we validated the changes in TRB2 by studying one of the TRB2’s substrates, Akt, in animal models. We expected a corresponding change in the levels of phosphorylated Akt. Indeed, our results showed that the phosphorylation of Akt at Thr 308 in the endothelial cells and phosphorylation of Akt at Ser 473 in adventitia was decreased in GK rats, compared with Wistar control. TRB2 plays important roles in the pathogenesis of diabetic-2 large artery complications at early stage, and these effects may be modulated by miR-98. Thus, targeting TRB2 and miR-98 could be considered as novel therapeutic strategies for the early large artery deficits in diabetic-2.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22012613</pmid><doi>10.1007/s11010-011-1116-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-8177
ispartof Molecular and cellular biochemistry, 2012-02, Vol.361 (1-2), p.305-314
issn 0300-8177
1573-4919
language eng
recordid cdi_proquest_miscellaneous_913032488
source MEDLINE; Springer Online Journals Complete
subjects 3' Untranslated Regions
Animal models
Animals
Aorta - metabolism
Aorta - pathology
Aortic Diseases - etiology
Aortic Diseases - genetics
Aortic Diseases - metabolism
Atherosclerosis - etiology
Atherosclerosis - genetics
Atherosclerosis - metabolism
Biochemistry
Biomedical and Life Sciences
Cardiology
Cells, Cultured
Comparative analysis
Complications and side effects
Diabetes
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
Diabetic Angiopathies - etiology
Diabetic Angiopathies - genetics
Diabetic Angiopathies - metabolism
Endothelial Cells - metabolism
Enzyme-linked immunosorbent assay
Gene Expression
Gene Expression Regulation
Genes, Reporter
Green Fluorescent Proteins - biosynthesis
Green Fluorescent Proteins - genetics
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Life Sciences
Male
Medical Biochemistry
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
Oncology
Proto-Oncogene Proteins c-akt - metabolism
Rats
Rats, Wistar
Ribonucleic acid
RNA
Rodents
Up-Regulation
Veins & arteries
title Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upregulation%20of%20TRB2%20induced%20by%20miR-98%20in%20the%20early%20lesions%20of%20large%20artery%20of%20type-2%20diabetic%20rat&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Xie,%20Shuyang&rft.date=2012-02-01&rft.volume=361&rft.issue=1-2&rft.spage=305&rft.epage=314&rft.pages=305-314&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-011-1116-7&rft_dat=%3Cgale_proqu%3EA358998701%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912812454&rft_id=info:pmid/22012613&rft_galeid=A358998701&rfr_iscdi=true