Hole spin relaxation in Ge–Si core–shell nanowire qubits

Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware 1 , 2 , 3 . Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2012-01, Vol.7 (1), p.47-50
Hauptverfasser: Hu, Yongjie, Kuemmeth, Ferdinand, Lieber, Charles M., Marcus, Charles M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 47
container_title Nature nanotechnology
container_volume 7
creator Hu, Yongjie
Kuemmeth, Ferdinand
Lieber, Charles M.
Marcus, Charles M.
description Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware 1 , 2 , 3 . Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates 4 , 5 , 6 . Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces 7 . Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure T 1 spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions. Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.
doi_str_mv 10.1038/nnano.2011.234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_913032474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>913032474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMobk6vHqV48dQuf9sGvMjQTRh4UM8hTVPt6JItaVFvfge_oZ_E1M0Jgqe84f29z_PwAHCKYIIgycfGSGMTDBFKMKF7YIgymseEcLa_m_NsAI68X0DIMMf0EAwwRhlnKR-Cy5ltdORXtYmcbuSrbGtrovCb6s_3j_s6Utb1k3_WTRP1Zi-109G6K-rWH4ODSjZen2zfEXi8uX6YzOL53fR2cjWPFU2zNmZEE6y0ykleskKH3AVVVZkrzEoGOUalZKiqME6lpopjWVJWyoyRVOZpFfARuNjorpxdd9q3Yll7FQJJo23nBUcEEkwzGsjzP-TCds6EcIJjEhwY4QFKNpBy1nunK7Fy9VK6N4Gg6FsV362KvlURWg0HZ1vVrljqcof_1BiA8QbwYWWetPu1_UfyC4uqhCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923226539</pqid></control><display><type>article</type><title>Hole spin relaxation in Ge–Si core–shell nanowire qubits</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Yongjie ; Kuemmeth, Ferdinand ; Lieber, Charles M. ; Marcus, Charles M.</creator><creatorcontrib>Hu, Yongjie ; Kuemmeth, Ferdinand ; Lieber, Charles M. ; Marcus, Charles M.</creatorcontrib><description>Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware 1 , 2 , 3 . Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates 4 , 5 , 6 . Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces 7 . Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure T 1 spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions. Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2011.234</identifier><identifier>PMID: 22179569</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1001 ; 639/925/357/1016 ; 639/925/927/481 ; Chemistry and Materials Science ; Electrons ; Fabrication ; Gallium ; Gallium arsenide ; letter ; Magnetic fields ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; Quantum dots</subject><ispartof>Nature nanotechnology, 2012-01, Vol.7 (1), p.47-50</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</citedby><cites>FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2011.234$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2011.234$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22179569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yongjie</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><creatorcontrib>Marcus, Charles M.</creatorcontrib><title>Hole spin relaxation in Ge–Si core–shell nanowire qubits</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware 1 , 2 , 3 . Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates 4 , 5 , 6 . Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces 7 . Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure T 1 spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions. Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.</description><subject>639/301/119/1001</subject><subject>639/925/357/1016</subject><subject>639/925/927/481</subject><subject>Chemistry and Materials Science</subject><subject>Electrons</subject><subject>Fabrication</subject><subject>Gallium</subject><subject>Gallium arsenide</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>Quantum dots</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LwzAYxoMobk6vHqV48dQuf9sGvMjQTRh4UM8hTVPt6JItaVFvfge_oZ_E1M0Jgqe84f29z_PwAHCKYIIgycfGSGMTDBFKMKF7YIgymseEcLa_m_NsAI68X0DIMMf0EAwwRhlnKR-Cy5ltdORXtYmcbuSrbGtrovCb6s_3j_s6Utb1k3_WTRP1Zi-109G6K-rWH4ODSjZen2zfEXi8uX6YzOL53fR2cjWPFU2zNmZEE6y0ykleskKH3AVVVZkrzEoGOUalZKiqME6lpopjWVJWyoyRVOZpFfARuNjorpxdd9q3Yll7FQJJo23nBUcEEkwzGsjzP-TCds6EcIJjEhwY4QFKNpBy1nunK7Fy9VK6N4Gg6FsV362KvlURWg0HZ1vVrljqcof_1BiA8QbwYWWetPu1_UfyC4uqhCE</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Hu, Yongjie</creator><creator>Kuemmeth, Ferdinand</creator><creator>Lieber, Charles M.</creator><creator>Marcus, Charles M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Hole spin relaxation in Ge–Si core–shell nanowire qubits</title><author>Hu, Yongjie ; Kuemmeth, Ferdinand ; Lieber, Charles M. ; Marcus, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/1001</topic><topic>639/925/357/1016</topic><topic>639/925/927/481</topic><topic>Chemistry and Materials Science</topic><topic>Electrons</topic><topic>Fabrication</topic><topic>Gallium</topic><topic>Gallium arsenide</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yongjie</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><creatorcontrib>Marcus, Charles M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yongjie</au><au>Kuemmeth, Ferdinand</au><au>Lieber, Charles M.</au><au>Marcus, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hole spin relaxation in Ge–Si core–shell nanowire qubits</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>47</spage><epage>50</epage><pages>47-50</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware 1 , 2 , 3 . Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates 4 , 5 , 6 . Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces 7 . Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure T 1 spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions. Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22179569</pmid><doi>10.1038/nnano.2011.234</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2012-01, Vol.7 (1), p.47-50
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_913032474
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/301/119/1001
639/925/357/1016
639/925/927/481
Chemistry and Materials Science
Electrons
Fabrication
Gallium
Gallium arsenide
letter
Magnetic fields
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Nanowires
Quantum dots
title Hole spin relaxation in Ge–Si core–shell nanowire qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hole%20spin%20relaxation%20in%20Ge%E2%80%93Si%20core%E2%80%93shell%20nanowire%20qubits&rft.jtitle=Nature%20nanotechnology&rft.au=Hu,%20Yongjie&rft.date=2012-01-01&rft.volume=7&rft.issue=1&rft.spage=47&rft.epage=50&rft.pages=47-50&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2011.234&rft_dat=%3Cproquest_cross%3E913032474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923226539&rft_id=info:pmid/22179569&rfr_iscdi=true