Hole spin relaxation in Ge–Si core–shell nanowire qubits
Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware 1 , 2 , 3 . Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence ra...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2012-01, Vol.7 (1), p.47-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Nature nanotechnology |
container_volume | 7 |
creator | Hu, Yongjie Kuemmeth, Ferdinand Lieber, Charles M. Marcus, Charles M. |
description | Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware
1
,
2
,
3
. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates
4
,
5
,
6
. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces
7
. Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure
T
1
spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions.
Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes. |
doi_str_mv | 10.1038/nnano.2011.234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_913032474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>913032474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMobk6vHqV48dQuf9sGvMjQTRh4UM8hTVPt6JItaVFvfge_oZ_E1M0Jgqe84f29z_PwAHCKYIIgycfGSGMTDBFKMKF7YIgymseEcLa_m_NsAI68X0DIMMf0EAwwRhlnKR-Cy5ltdORXtYmcbuSrbGtrovCb6s_3j_s6Utb1k3_WTRP1Zi-109G6K-rWH4ODSjZen2zfEXi8uX6YzOL53fR2cjWPFU2zNmZEE6y0ykleskKH3AVVVZkrzEoGOUalZKiqME6lpopjWVJWyoyRVOZpFfARuNjorpxdd9q3Yll7FQJJo23nBUcEEkwzGsjzP-TCds6EcIJjEhwY4QFKNpBy1nunK7Fy9VK6N4Gg6FsV362KvlURWg0HZ1vVrljqcof_1BiA8QbwYWWetPu1_UfyC4uqhCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923226539</pqid></control><display><type>article</type><title>Hole spin relaxation in Ge–Si core–shell nanowire qubits</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Yongjie ; Kuemmeth, Ferdinand ; Lieber, Charles M. ; Marcus, Charles M.</creator><creatorcontrib>Hu, Yongjie ; Kuemmeth, Ferdinand ; Lieber, Charles M. ; Marcus, Charles M.</creatorcontrib><description>Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware
1
,
2
,
3
. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates
4
,
5
,
6
. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces
7
. Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure
T
1
spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions.
Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2011.234</identifier><identifier>PMID: 22179569</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1001 ; 639/925/357/1016 ; 639/925/927/481 ; Chemistry and Materials Science ; Electrons ; Fabrication ; Gallium ; Gallium arsenide ; letter ; Magnetic fields ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; Quantum dots</subject><ispartof>Nature nanotechnology, 2012-01, Vol.7 (1), p.47-50</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</citedby><cites>FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2011.234$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2011.234$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22179569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yongjie</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><creatorcontrib>Marcus, Charles M.</creatorcontrib><title>Hole spin relaxation in Ge–Si core–shell nanowire qubits</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware
1
,
2
,
3
. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates
4
,
5
,
6
. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces
7
. Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure
T
1
spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions.
Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.</description><subject>639/301/119/1001</subject><subject>639/925/357/1016</subject><subject>639/925/927/481</subject><subject>Chemistry and Materials Science</subject><subject>Electrons</subject><subject>Fabrication</subject><subject>Gallium</subject><subject>Gallium arsenide</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>Quantum dots</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LwzAYxoMobk6vHqV48dQuf9sGvMjQTRh4UM8hTVPt6JItaVFvfge_oZ_E1M0Jgqe84f29z_PwAHCKYIIgycfGSGMTDBFKMKF7YIgymseEcLa_m_NsAI68X0DIMMf0EAwwRhlnKR-Cy5ltdORXtYmcbuSrbGtrovCb6s_3j_s6Utb1k3_WTRP1Zi-109G6K-rWH4ODSjZen2zfEXi8uX6YzOL53fR2cjWPFU2zNmZEE6y0ykleskKH3AVVVZkrzEoGOUalZKiqME6lpopjWVJWyoyRVOZpFfARuNjorpxdd9q3Yll7FQJJo23nBUcEEkwzGsjzP-TCds6EcIJjEhwY4QFKNpBy1nunK7Fy9VK6N4Gg6FsV362KvlURWg0HZ1vVrljqcof_1BiA8QbwYWWetPu1_UfyC4uqhCE</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Hu, Yongjie</creator><creator>Kuemmeth, Ferdinand</creator><creator>Lieber, Charles M.</creator><creator>Marcus, Charles M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Hole spin relaxation in Ge–Si core–shell nanowire qubits</title><author>Hu, Yongjie ; Kuemmeth, Ferdinand ; Lieber, Charles M. ; Marcus, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-53e32cec838d5be103b4cfd8c25d50921da51ff226ae4c92ad45da7536a86f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/1001</topic><topic>639/925/357/1016</topic><topic>639/925/927/481</topic><topic>Chemistry and Materials Science</topic><topic>Electrons</topic><topic>Fabrication</topic><topic>Gallium</topic><topic>Gallium arsenide</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yongjie</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><creatorcontrib>Marcus, Charles M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yongjie</au><au>Kuemmeth, Ferdinand</au><au>Lieber, Charles M.</au><au>Marcus, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hole spin relaxation in Ge–Si core–shell nanowire qubits</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>47</spage><epage>50</epage><pages>47-50</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware
1
,
2
,
3
. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates
4
,
5
,
6
. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces
7
. Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure
T
1
spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions.
Spin doublets of holes in nanowires with a germanium core and a silicon shell can be manipulated in fast-gated double quantum dots to create quantum bits with long spin lifetimes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22179569</pmid><doi>10.1038/nnano.2011.234</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2012-01, Vol.7 (1), p.47-50 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_913032474 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/119/1001 639/925/357/1016 639/925/927/481 Chemistry and Materials Science Electrons Fabrication Gallium Gallium arsenide letter Magnetic fields Materials Science Nanotechnology Nanotechnology and Microengineering Nanowires Quantum dots |
title | Hole spin relaxation in Ge–Si core–shell nanowire qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hole%20spin%20relaxation%20in%20Ge%E2%80%93Si%20core%E2%80%93shell%20nanowire%20qubits&rft.jtitle=Nature%20nanotechnology&rft.au=Hu,%20Yongjie&rft.date=2012-01-01&rft.volume=7&rft.issue=1&rft.spage=47&rft.epage=50&rft.pages=47-50&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2011.234&rft_dat=%3Cproquest_cross%3E913032474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923226539&rft_id=info:pmid/22179569&rfr_iscdi=true |