Novel Freeway Traffic Control with Variable Speed Limit and Coordinated Ramp Metering
Freeway corridor traffic flow is limited by bottleneck flow. If the section upstream of a bottleneck is congested, the bottleneck flow will drop well below its capacity. A logical approach to maximizing recurrent bottleneck flow is to create a discharge section immediately upstream of the bottleneck...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2011-01, Vol.2229 (1), p.55-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Transportation research record |
container_volume | 2229 |
creator | Lu, Xiao-Yun Varaiya, Pravin Horowitz, Roberto Su, Dongyan Shladover, Steven E. |
description | Freeway corridor traffic flow is limited by bottleneck flow. If the section upstream of a bottleneck is congested, the bottleneck flow will drop well below its capacity. A logical approach to maximizing recurrent bottleneck flow is to create a discharge section immediately upstream of the bottleneck. This paper proposes a control strategy for combining variable speed limits (VSL) and coordinated ramp metering (CRM) design to achieve this objective when the bottleneck can be represented as a lane (or virtual lane) reduction. At each time step, VSL is designed first, with mainline flow, on-ramp demand and length, and driver acceptance taken into account. VSL values are determined for three locations: (a) the critical VSL to regulate the discharge section flow to match bottleneck capacity, (b) the VSL for the potentially congested section (mainline storage), and (c) the VSL upstream of the congestion tail. With the selected VSL, the first-order mainline flow model is linearized and then used for CRM design with model predictive control to minimize the difference between scaled total travel time (or vehicle hours traveled) and the total travel distance (equivalent to vehicle miles traveled). Microscopic simulation shows that this control strategy should improve bottleneck throughput significantly. |
doi_str_mv | 10.3141/2229-07 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_912923884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3141_2229-07</sage_id><sourcerecordid>1777118869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-11eeade3bb58ab73077b0a7a9bcabe33b9fb7faaf0fc8538d2e7bcb6001a58793</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtYq_oUcBL2sJpvdTfYoxapQFbT1Gia7k5qyXyZbS_-9W-pBEDwNDA_vMC8h55xdC57wmziO84jJAzKKeZZHCUvjQzJiIuMRzxU_JichrBgTIpFiRBbP7RdWdOoRN7Clcw_WuoJO2qb3bUU3rv-g7-AdmArpW4dY0pmrXU-hKQfV-tI10A_bV6g7-oQ9etcsT8mRhSrg2c8ck8X0bj55iGYv94-T21lUDNf7iHNEKFEYkyowUjApDQMJuSnAoBAmt0ZaAMtsoVKhyhilKUzGGIdUyVyMyeU-t_Pt5xpDr2sXCqwqaLBdB53zOI-FUskgr_6VXErJuVLZr9DCtyF4tLrzrga_1ZzpXcV6V7FmcpAXexlgiXrVrn0zfPuHfQOBpXk5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777118869</pqid></control><display><type>article</type><title>Novel Freeway Traffic Control with Variable Speed Limit and Coordinated Ramp Metering</title><source>SAGE Complete A-Z List</source><creator>Lu, Xiao-Yun ; Varaiya, Pravin ; Horowitz, Roberto ; Su, Dongyan ; Shladover, Steven E.</creator><creatorcontrib>Lu, Xiao-Yun ; Varaiya, Pravin ; Horowitz, Roberto ; Su, Dongyan ; Shladover, Steven E.</creatorcontrib><description>Freeway corridor traffic flow is limited by bottleneck flow. If the section upstream of a bottleneck is congested, the bottleneck flow will drop well below its capacity. A logical approach to maximizing recurrent bottleneck flow is to create a discharge section immediately upstream of the bottleneck. This paper proposes a control strategy for combining variable speed limits (VSL) and coordinated ramp metering (CRM) design to achieve this objective when the bottleneck can be represented as a lane (or virtual lane) reduction. At each time step, VSL is designed first, with mainline flow, on-ramp demand and length, and driver acceptance taken into account. VSL values are determined for three locations: (a) the critical VSL to regulate the discharge section flow to match bottleneck capacity, (b) the VSL for the potentially congested section (mainline storage), and (c) the VSL upstream of the congestion tail. With the selected VSL, the first-order mainline flow model is linearized and then used for CRM design with model predictive control to minimize the difference between scaled total travel time (or vehicle hours traveled) and the total travel distance (equivalent to vehicle miles traveled). Microscopic simulation shows that this control strategy should improve bottleneck throughput significantly.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.3141/2229-07</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Discharge ; Freeways ; Lanes ; Mathematical models ; Metering ; Ramps ; Upstream ; Variable speed</subject><ispartof>Transportation research record, 2011-01, Vol.2229 (1), p.55-65</ispartof><rights>2011 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-11eeade3bb58ab73077b0a7a9bcabe33b9fb7faaf0fc8538d2e7bcb6001a58793</citedby><cites>FETCH-LOGICAL-c347t-11eeade3bb58ab73077b0a7a9bcabe33b9fb7faaf0fc8538d2e7bcb6001a58793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3141/2229-07$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3141/2229-07$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Lu, Xiao-Yun</creatorcontrib><creatorcontrib>Varaiya, Pravin</creatorcontrib><creatorcontrib>Horowitz, Roberto</creatorcontrib><creatorcontrib>Su, Dongyan</creatorcontrib><creatorcontrib>Shladover, Steven E.</creatorcontrib><title>Novel Freeway Traffic Control with Variable Speed Limit and Coordinated Ramp Metering</title><title>Transportation research record</title><description>Freeway corridor traffic flow is limited by bottleneck flow. If the section upstream of a bottleneck is congested, the bottleneck flow will drop well below its capacity. A logical approach to maximizing recurrent bottleneck flow is to create a discharge section immediately upstream of the bottleneck. This paper proposes a control strategy for combining variable speed limits (VSL) and coordinated ramp metering (CRM) design to achieve this objective when the bottleneck can be represented as a lane (or virtual lane) reduction. At each time step, VSL is designed first, with mainline flow, on-ramp demand and length, and driver acceptance taken into account. VSL values are determined for three locations: (a) the critical VSL to regulate the discharge section flow to match bottleneck capacity, (b) the VSL for the potentially congested section (mainline storage), and (c) the VSL upstream of the congestion tail. With the selected VSL, the first-order mainline flow model is linearized and then used for CRM design with model predictive control to minimize the difference between scaled total travel time (or vehicle hours traveled) and the total travel distance (equivalent to vehicle miles traveled). Microscopic simulation shows that this control strategy should improve bottleneck throughput significantly.</description><subject>Discharge</subject><subject>Freeways</subject><subject>Lanes</subject><subject>Mathematical models</subject><subject>Metering</subject><subject>Ramps</subject><subject>Upstream</subject><subject>Variable speed</subject><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtYq_oUcBL2sJpvdTfYoxapQFbT1Gia7k5qyXyZbS_-9W-pBEDwNDA_vMC8h55xdC57wmziO84jJAzKKeZZHCUvjQzJiIuMRzxU_JichrBgTIpFiRBbP7RdWdOoRN7Clcw_WuoJO2qb3bUU3rv-g7-AdmArpW4dY0pmrXU-hKQfV-tI10A_bV6g7-oQ9etcsT8mRhSrg2c8ck8X0bj55iGYv94-T21lUDNf7iHNEKFEYkyowUjApDQMJuSnAoBAmt0ZaAMtsoVKhyhilKUzGGIdUyVyMyeU-t_Pt5xpDr2sXCqwqaLBdB53zOI-FUskgr_6VXErJuVLZr9DCtyF4tLrzrga_1ZzpXcV6V7FmcpAXexlgiXrVrn0zfPuHfQOBpXk5</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Lu, Xiao-Yun</creator><creator>Varaiya, Pravin</creator><creator>Horowitz, Roberto</creator><creator>Su, Dongyan</creator><creator>Shladover, Steven E.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7T2</scope><scope>7U2</scope></search><sort><creationdate>20110101</creationdate><title>Novel Freeway Traffic Control with Variable Speed Limit and Coordinated Ramp Metering</title><author>Lu, Xiao-Yun ; Varaiya, Pravin ; Horowitz, Roberto ; Su, Dongyan ; Shladover, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-11eeade3bb58ab73077b0a7a9bcabe33b9fb7faaf0fc8538d2e7bcb6001a58793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Discharge</topic><topic>Freeways</topic><topic>Lanes</topic><topic>Mathematical models</topic><topic>Metering</topic><topic>Ramps</topic><topic>Upstream</topic><topic>Variable speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiao-Yun</creatorcontrib><creatorcontrib>Varaiya, Pravin</creatorcontrib><creatorcontrib>Horowitz, Roberto</creatorcontrib><creatorcontrib>Su, Dongyan</creatorcontrib><creatorcontrib>Shladover, Steven E.</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiao-Yun</au><au>Varaiya, Pravin</au><au>Horowitz, Roberto</au><au>Su, Dongyan</au><au>Shladover, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Freeway Traffic Control with Variable Speed Limit and Coordinated Ramp Metering</atitle><jtitle>Transportation research record</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2229</volume><issue>1</issue><spage>55</spage><epage>65</epage><pages>55-65</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>Freeway corridor traffic flow is limited by bottleneck flow. If the section upstream of a bottleneck is congested, the bottleneck flow will drop well below its capacity. A logical approach to maximizing recurrent bottleneck flow is to create a discharge section immediately upstream of the bottleneck. This paper proposes a control strategy for combining variable speed limits (VSL) and coordinated ramp metering (CRM) design to achieve this objective when the bottleneck can be represented as a lane (or virtual lane) reduction. At each time step, VSL is designed first, with mainline flow, on-ramp demand and length, and driver acceptance taken into account. VSL values are determined for three locations: (a) the critical VSL to regulate the discharge section flow to match bottleneck capacity, (b) the VSL for the potentially congested section (mainline storage), and (c) the VSL upstream of the congestion tail. With the selected VSL, the first-order mainline flow model is linearized and then used for CRM design with model predictive control to minimize the difference between scaled total travel time (or vehicle hours traveled) and the total travel distance (equivalent to vehicle miles traveled). Microscopic simulation shows that this control strategy should improve bottleneck throughput significantly.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3141/2229-07</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1981 |
ispartof | Transportation research record, 2011-01, Vol.2229 (1), p.55-65 |
issn | 0361-1981 2169-4052 |
language | eng |
recordid | cdi_proquest_miscellaneous_912923884 |
source | SAGE Complete A-Z List |
subjects | Discharge Freeways Lanes Mathematical models Metering Ramps Upstream Variable speed |
title | Novel Freeway Traffic Control with Variable Speed Limit and Coordinated Ramp Metering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Freeway%20Traffic%20Control%20with%20Variable%20Speed%20Limit%20and%20Coordinated%20Ramp%20Metering&rft.jtitle=Transportation%20research%20record&rft.au=Lu,%20Xiao-Yun&rft.date=2011-01-01&rft.volume=2229&rft.issue=1&rft.spage=55&rft.epage=65&rft.pages=55-65&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.3141/2229-07&rft_dat=%3Cproquest_cross%3E1777118869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777118869&rft_id=info:pmid/&rft_sage_id=10.3141_2229-07&rfr_iscdi=true |