The composition and structure of the Enceladus plume

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H2O gas, with a nominal line‐of‐sight column den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2011-06, Vol.38 (11), p.n/a
Hauptverfasser: Hansen, C. J., Shemansky, D. E., Esposito, L. W., Stewart, A. I. F., Lewis, B. R., Colwell, J. E., Hendrix, A. R., West, R. A., Waite Jr, J. H., Teolis, B., Magee, B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Geophysical research letters
container_volume 38
creator Hansen, C. J.
Shemansky, D. E.
Esposito, L. W.
Stewart, A. I. F.
Lewis, B. R.
Colwell, J. E.
Hendrix, A. R.
West, R. A.
Waite Jr, J. H.
Teolis, B.
Magee, B. A.
description The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H2O gas, with a nominal line‐of‐sight column density of 0.90 ± 0.23 × 1016 cm−2 (upper limit of 1.0 × 1016 cm−2). The upper limit for N2 is 5 × 1013 cm−2, or
doi_str_mv 10.1029/2011GL047415
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_912922172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912922172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5288-4a711e1e452f9b54214328a1e45a067f0f5c78d64e07c71633731d32ed8a69e23</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFZv_oAgiF6iM7Ob_ThK0SgUFa14XNZkg9E0qdkE9d-bWiniwdMMM8_7Mh-M7SOcIJA5JUBMpyCUwGSDjdAIEWsAtclGAGbIScltthPCCwBw4DhiYvbso6yZL5pQdmVTR67Oo9C1fdb1rY-aIuoG4LzOfOXyPkSLqp_7XbZVuCr4vZ84Zg8X57PJZTy9Sa8mZ9PYJaR1LJxC9OhFQoV5SgSh4KTdsuBAqgKKJFM6l8KDyhRKzhXHnJPPtZPGEx-zo5Xvom3eeh86Oy_DMEnlat_0wRokQ4RqSR7_S6Ic_EEL5AN68Ad9afq2HvawBkhyTIbbjNnhD-RC5qqidXVWBrtoy7lrPy1pBCGUHjhace9l5T_XfQS7fIj9_RCb3k1Jw7coXonK0PmPtci1r1YqrhL7eJ1ac0szKeW9TfgXcH6J9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902631500</pqid></control><display><type>article</type><title>The composition and structure of the Enceladus plume</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Hansen, C. J. ; Shemansky, D. E. ; Esposito, L. W. ; Stewart, A. I. F. ; Lewis, B. R. ; Colwell, J. E. ; Hendrix, A. R. ; West, R. A. ; Waite Jr, J. H. ; Teolis, B. ; Magee, B. A.</creator><creatorcontrib>Hansen, C. J. ; Shemansky, D. E. ; Esposito, L. W. ; Stewart, A. I. F. ; Lewis, B. R. ; Colwell, J. E. ; Hendrix, A. R. ; West, R. A. ; Waite Jr, J. H. ; Teolis, B. ; Magee, B. A.</creatorcontrib><description>The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H2O gas, with a nominal line‐of‐sight column density of 0.90 ± 0.23 × 1016 cm−2 (upper limit of 1.0 × 1016 cm−2). The upper limit for N2 is 5 × 1013 cm−2, or &lt;0.5% in the plume; the lack of N2 has significant implications for models of the geochemistry in Enceladus' interior. The inferred rate of water vapor injection into Saturn's magnetosphere is ∼200 kg/s. The calculated values of H2O flux from three occultations observed by UVIS have a standard deviation of 30 kg/s (15%), providing no evidence for substantial short‐term variability. Collimated gas jets are detected in the plume with Mach numbers of 5–8, implying vertical gas velocities that exceed 1000 m/sec. Observations at higher altitudes with the Cassini Ion Neutral Mass Spectrometer indicate correlated structure in the plume. Our results support the subsurface liquid model, with gas escaping and being accelerated through nozzle‐like channels to the surface, and are consistent with recent particle composition results from the Cassini Cosmic Dust Analyzer. Key Points N2 upper limit Mach number of jets ranges from 5 to 8, more collimated than previous estimate Flux of water vapor stable over last 6 years at 200 kg/sec</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2011GL047415</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Cassini mission ; Collimation ; Earth sciences ; Earth, ocean, space ; Enceladus ; Enceladus plume ; Exact sciences and technology ; Flux ; Geochemistry ; Moons ; Planetology ; Planets ; Plumes ; Polar environments ; Remote sensing ; Saturn ; Ultraviolet ; Water vapor</subject><ispartof>Geophysical research letters, 2011-06, Vol.38 (11), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5288-4a711e1e452f9b54214328a1e45a067f0f5c78d64e07c71633731d32ed8a69e23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011GL047415$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011GL047415$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28104478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, C. J.</creatorcontrib><creatorcontrib>Shemansky, D. E.</creatorcontrib><creatorcontrib>Esposito, L. W.</creatorcontrib><creatorcontrib>Stewart, A. I. F.</creatorcontrib><creatorcontrib>Lewis, B. R.</creatorcontrib><creatorcontrib>Colwell, J. E.</creatorcontrib><creatorcontrib>Hendrix, A. R.</creatorcontrib><creatorcontrib>West, R. A.</creatorcontrib><creatorcontrib>Waite Jr, J. H.</creatorcontrib><creatorcontrib>Teolis, B.</creatorcontrib><creatorcontrib>Magee, B. A.</creatorcontrib><title>The composition and structure of the Enceladus plume</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H2O gas, with a nominal line‐of‐sight column density of 0.90 ± 0.23 × 1016 cm−2 (upper limit of 1.0 × 1016 cm−2). The upper limit for N2 is 5 × 1013 cm−2, or &lt;0.5% in the plume; the lack of N2 has significant implications for models of the geochemistry in Enceladus' interior. The inferred rate of water vapor injection into Saturn's magnetosphere is ∼200 kg/s. The calculated values of H2O flux from three occultations observed by UVIS have a standard deviation of 30 kg/s (15%), providing no evidence for substantial short‐term variability. Collimated gas jets are detected in the plume with Mach numbers of 5–8, implying vertical gas velocities that exceed 1000 m/sec. Observations at higher altitudes with the Cassini Ion Neutral Mass Spectrometer indicate correlated structure in the plume. Our results support the subsurface liquid model, with gas escaping and being accelerated through nozzle‐like channels to the surface, and are consistent with recent particle composition results from the Cassini Cosmic Dust Analyzer. Key Points N2 upper limit Mach number of jets ranges from 5 to 8, more collimated than previous estimate Flux of water vapor stable over last 6 years at 200 kg/sec</description><subject>Cassini mission</subject><subject>Collimation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Enceladus</subject><subject>Enceladus plume</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Geochemistry</subject><subject>Moons</subject><subject>Planetology</subject><subject>Planets</subject><subject>Plumes</subject><subject>Polar environments</subject><subject>Remote sensing</subject><subject>Saturn</subject><subject>Ultraviolet</subject><subject>Water vapor</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1Lw0AQhhdRsFZv_oAgiF6iM7Ob_ThK0SgUFa14XNZkg9E0qdkE9d-bWiniwdMMM8_7Mh-M7SOcIJA5JUBMpyCUwGSDjdAIEWsAtclGAGbIScltthPCCwBw4DhiYvbso6yZL5pQdmVTR67Oo9C1fdb1rY-aIuoG4LzOfOXyPkSLqp_7XbZVuCr4vZ84Zg8X57PJZTy9Sa8mZ9PYJaR1LJxC9OhFQoV5SgSh4KTdsuBAqgKKJFM6l8KDyhRKzhXHnJPPtZPGEx-zo5Xvom3eeh86Oy_DMEnlat_0wRokQ4RqSR7_S6Ic_EEL5AN68Ad9afq2HvawBkhyTIbbjNnhD-RC5qqidXVWBrtoy7lrPy1pBCGUHjhace9l5T_XfQS7fIj9_RCb3k1Jw7coXonK0PmPtci1r1YqrhL7eJ1ac0szKeW9TfgXcH6J9A</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Hansen, C. J.</creator><creator>Shemansky, D. E.</creator><creator>Esposito, L. W.</creator><creator>Stewart, A. I. F.</creator><creator>Lewis, B. R.</creator><creator>Colwell, J. E.</creator><creator>Hendrix, A. R.</creator><creator>West, R. A.</creator><creator>Waite Jr, J. H.</creator><creator>Teolis, B.</creator><creator>Magee, B. A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SM</scope></search><sort><creationdate>201106</creationdate><title>The composition and structure of the Enceladus plume</title><author>Hansen, C. J. ; Shemansky, D. E. ; Esposito, L. W. ; Stewart, A. I. F. ; Lewis, B. R. ; Colwell, J. E. ; Hendrix, A. R. ; West, R. A. ; Waite Jr, J. H. ; Teolis, B. ; Magee, B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5288-4a711e1e452f9b54214328a1e45a067f0f5c78d64e07c71633731d32ed8a69e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cassini mission</topic><topic>Collimation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Enceladus</topic><topic>Enceladus plume</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Geochemistry</topic><topic>Moons</topic><topic>Planetology</topic><topic>Planets</topic><topic>Plumes</topic><topic>Polar environments</topic><topic>Remote sensing</topic><topic>Saturn</topic><topic>Ultraviolet</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, C. J.</creatorcontrib><creatorcontrib>Shemansky, D. E.</creatorcontrib><creatorcontrib>Esposito, L. W.</creatorcontrib><creatorcontrib>Stewart, A. I. F.</creatorcontrib><creatorcontrib>Lewis, B. R.</creatorcontrib><creatorcontrib>Colwell, J. E.</creatorcontrib><creatorcontrib>Hendrix, A. R.</creatorcontrib><creatorcontrib>West, R. A.</creatorcontrib><creatorcontrib>Waite Jr, J. H.</creatorcontrib><creatorcontrib>Teolis, B.</creatorcontrib><creatorcontrib>Magee, B. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, C. J.</au><au>Shemansky, D. E.</au><au>Esposito, L. W.</au><au>Stewart, A. I. F.</au><au>Lewis, B. R.</au><au>Colwell, J. E.</au><au>Hendrix, A. R.</au><au>West, R. A.</au><au>Waite Jr, J. H.</au><au>Teolis, B.</au><au>Magee, B. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The composition and structure of the Enceladus plume</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2011-06</date><risdate>2011</risdate><volume>38</volume><issue>11</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H2O gas, with a nominal line‐of‐sight column density of 0.90 ± 0.23 × 1016 cm−2 (upper limit of 1.0 × 1016 cm−2). The upper limit for N2 is 5 × 1013 cm−2, or &lt;0.5% in the plume; the lack of N2 has significant implications for models of the geochemistry in Enceladus' interior. The inferred rate of water vapor injection into Saturn's magnetosphere is ∼200 kg/s. The calculated values of H2O flux from three occultations observed by UVIS have a standard deviation of 30 kg/s (15%), providing no evidence for substantial short‐term variability. Collimated gas jets are detected in the plume with Mach numbers of 5–8, implying vertical gas velocities that exceed 1000 m/sec. Observations at higher altitudes with the Cassini Ion Neutral Mass Spectrometer indicate correlated structure in the plume. Our results support the subsurface liquid model, with gas escaping and being accelerated through nozzle‐like channels to the surface, and are consistent with recent particle composition results from the Cassini Cosmic Dust Analyzer. Key Points N2 upper limit Mach number of jets ranges from 5 to 8, more collimated than previous estimate Flux of water vapor stable over last 6 years at 200 kg/sec</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011GL047415</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2011-06, Vol.38 (11), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_912922172
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Cassini mission
Collimation
Earth sciences
Earth, ocean, space
Enceladus
Enceladus plume
Exact sciences and technology
Flux
Geochemistry
Moons
Planetology
Planets
Plumes
Polar environments
Remote sensing
Saturn
Ultraviolet
Water vapor
title The composition and structure of the Enceladus plume
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20composition%20and%20structure%20of%20the%20Enceladus%20plume&rft.jtitle=Geophysical%20research%20letters&rft.au=Hansen,%20C.%20J.&rft.date=2011-06&rft.volume=38&rft.issue=11&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2011GL047415&rft_dat=%3Cproquest_pasca%3E912922172%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902631500&rft_id=info:pmid/&rfr_iscdi=true