Taking the energy out of spatio-temporal energy models of human motion processing: The Component Level Feature Model

► An extended explicit simulation of the Component Level Feature Model. ► CLFM accurately computes the IOC direction for 200 plaids without computing energy. ► Output is compared with critical psychophysical studies of perceived direction. ► Includes novel explanations for plaid motion not perceived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) 2011-12, Vol.51 (23), p.2425-2430
1. Verfasser: Bowns, Linda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2430
container_issue 23
container_start_page 2425
container_title Vision research (Oxford)
container_volume 51
creator Bowns, Linda
description ► An extended explicit simulation of the Component Level Feature Model. ► CLFM accurately computes the IOC direction for 200 plaids without computing energy. ► Output is compared with critical psychophysical studies of perceived direction. ► Includes novel explanations for plaid motion not perceived in the IOC direction. Standard biologically inspired spatio-temporal energy models of how humans perceive moving two-dimensional patterns often have two critical stages. In the first stage, suitable filters are convolved with the pattern over time to extract information at the “component” level. Motion energy is then computed for each component. The second stage typically computes pattern velocity using the intersection of constraints rule (IOC). This paper describes a new implementation of the Component Level Feature Model ( Bowns, 2002) that computes motion direction that is similar to these two stages except that it does not compute motion energy. Here the model computes direction for 200 randomly generated plaids. The output linearly matched that predicted by the IOC. The model was also able to predict the perceived direction even when it deviated from the IOC due to the following variables – speed ratio ( Bowns, 1996); duration ( Yo & Wilson, 1992); adaptation ( Bowns & Alais, 2006). The model provides a novel explanation for each of the above and for why multiple directions can be represented for the same stimuli ( Bowns & Alais, 2006); and why some second-order information attributed to non-linearities ( Derrington, Badcock, & Holroyd, 1992) reverses perceived motion direction. Finally, CLFM is invariant to contrast and phase.
doi_str_mv 10.1016/j.visres.2011.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_912920757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0042698911003531</els_id><sourcerecordid>906556605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-2cc09f280848d308866e86932d3cf93a066d1ee3016cfeb9b838bf2d4254511f3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhi0EYqXwDxDyBXFK9tlJXJsD0lSxMalol-5suc6XzSWJi-1U2r_HUTt2g5Nl-Xk_f3ofQj4yKBkwcbkvjy4GjCUHxkpQJbD6FVkwuZJFI2rxmiwAal4IJdUFeRfjHgBWDVdvyQXnAE0l5YKkrfnlxgeaHpHiiOHhifopUd_ReDDJ-SLhcPDB9M-vg2-xjzPwOA1mzPdMjfQQvMUY86ivdJtnrX2OjTgmusEj9vQaTZoC0p9z_D1505k-4ofzuST319-36x_F5u7mdn21KWwtVCq4taA6LkHWsq1ASiFQClXxtrKdqgwI0TLEKrdhO9ypnazkruNtzZu6YayrluTLaW7e7veEMenBRYt9b0b0U9SKccVzJ6v_kyCaRohc2pLUJ9IGH3P_nT4EN5jwpBnoWYze65MYPYvRoHQWk2Ofzh9MuwHbv6FnExn4fAZMtKbvghmtiy9cFlcJMW_67cRlC3h0GHS0DkeLrQtok269-_cmfwBCWq5h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906556605</pqid></control><display><type>article</type><title>Taking the energy out of spatio-temporal energy models of human motion processing: The Component Level Feature Model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bowns, Linda</creator><creatorcontrib>Bowns, Linda</creatorcontrib><description>► An extended explicit simulation of the Component Level Feature Model. ► CLFM accurately computes the IOC direction for 200 plaids without computing energy. ► Output is compared with critical psychophysical studies of perceived direction. ► Includes novel explanations for plaid motion not perceived in the IOC direction. Standard biologically inspired spatio-temporal energy models of how humans perceive moving two-dimensional patterns often have two critical stages. In the first stage, suitable filters are convolved with the pattern over time to extract information at the “component” level. Motion energy is then computed for each component. The second stage typically computes pattern velocity using the intersection of constraints rule (IOC). This paper describes a new implementation of the Component Level Feature Model ( Bowns, 2002) that computes motion direction that is similar to these two stages except that it does not compute motion energy. Here the model computes direction for 200 randomly generated plaids. The output linearly matched that predicted by the IOC. The model was also able to predict the perceived direction even when it deviated from the IOC due to the following variables – speed ratio ( Bowns, 1996); duration ( Yo &amp; Wilson, 1992); adaptation ( Bowns &amp; Alais, 2006). The model provides a novel explanation for each of the above and for why multiple directions can be represented for the same stimuli ( Bowns &amp; Alais, 2006); and why some second-order information attributed to non-linearities ( Derrington, Badcock, &amp; Holroyd, 1992) reverses perceived motion direction. Finally, CLFM is invariant to contrast and phase.</description><identifier>ISSN: 0042-6989</identifier><identifier>EISSN: 1878-5646</identifier><identifier>DOI: 10.1016/j.visres.2011.09.014</identifier><identifier>PMID: 22005388</identifier><identifier>CODEN: VISRAM</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biological and medical sciences ; CLFM ; Contrast Sensitivity - physiology ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Humans ; Intersection of constraints ; IOC ; Models, Psychological ; Motion ; Motion Perception - physiology ; Time Factors ; Vector average ; Vertebrates: nervous system and sense organs</subject><ispartof>Vision research (Oxford), 2011-12, Vol.51 (23), p.2425-2430</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-2cc09f280848d308866e86932d3cf93a066d1ee3016cfeb9b838bf2d4254511f3</citedby><cites>FETCH-LOGICAL-c469t-2cc09f280848d308866e86932d3cf93a066d1ee3016cfeb9b838bf2d4254511f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0042698911003531$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25293667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22005388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowns, Linda</creatorcontrib><title>Taking the energy out of spatio-temporal energy models of human motion processing: The Component Level Feature Model</title><title>Vision research (Oxford)</title><addtitle>Vision Res</addtitle><description>► An extended explicit simulation of the Component Level Feature Model. ► CLFM accurately computes the IOC direction for 200 plaids without computing energy. ► Output is compared with critical psychophysical studies of perceived direction. ► Includes novel explanations for plaid motion not perceived in the IOC direction. Standard biologically inspired spatio-temporal energy models of how humans perceive moving two-dimensional patterns often have two critical stages. In the first stage, suitable filters are convolved with the pattern over time to extract information at the “component” level. Motion energy is then computed for each component. The second stage typically computes pattern velocity using the intersection of constraints rule (IOC). This paper describes a new implementation of the Component Level Feature Model ( Bowns, 2002) that computes motion direction that is similar to these two stages except that it does not compute motion energy. Here the model computes direction for 200 randomly generated plaids. The output linearly matched that predicted by the IOC. The model was also able to predict the perceived direction even when it deviated from the IOC due to the following variables – speed ratio ( Bowns, 1996); duration ( Yo &amp; Wilson, 1992); adaptation ( Bowns &amp; Alais, 2006). The model provides a novel explanation for each of the above and for why multiple directions can be represented for the same stimuli ( Bowns &amp; Alais, 2006); and why some second-order information attributed to non-linearities ( Derrington, Badcock, &amp; Holroyd, 1992) reverses perceived motion direction. Finally, CLFM is invariant to contrast and phase.</description><subject>Biological and medical sciences</subject><subject>CLFM</subject><subject>Contrast Sensitivity - physiology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Intersection of constraints</subject><subject>IOC</subject><subject>Models, Psychological</subject><subject>Motion</subject><subject>Motion Perception - physiology</subject><subject>Time Factors</subject><subject>Vector average</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0042-6989</issn><issn>1878-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv0zAYhi0EYqXwDxDyBXFK9tlJXJsD0lSxMalol-5suc6XzSWJi-1U2r_HUTt2g5Nl-Xk_f3ofQj4yKBkwcbkvjy4GjCUHxkpQJbD6FVkwuZJFI2rxmiwAal4IJdUFeRfjHgBWDVdvyQXnAE0l5YKkrfnlxgeaHpHiiOHhifopUd_ReDDJ-SLhcPDB9M-vg2-xjzPwOA1mzPdMjfQQvMUY86ivdJtnrX2OjTgmusEj9vQaTZoC0p9z_D1505k-4ofzuST319-36x_F5u7mdn21KWwtVCq4taA6LkHWsq1ASiFQClXxtrKdqgwI0TLEKrdhO9ypnazkruNtzZu6YayrluTLaW7e7veEMenBRYt9b0b0U9SKccVzJ6v_kyCaRohc2pLUJ9IGH3P_nT4EN5jwpBnoWYze65MYPYvRoHQWk2Ofzh9MuwHbv6FnExn4fAZMtKbvghmtiy9cFlcJMW_67cRlC3h0GHS0DkeLrQtok269-_cmfwBCWq5h</recordid><startdate>20111208</startdate><enddate>20111208</enddate><creator>Bowns, Linda</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20111208</creationdate><title>Taking the energy out of spatio-temporal energy models of human motion processing: The Component Level Feature Model</title><author>Bowns, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-2cc09f280848d308866e86932d3cf93a066d1ee3016cfeb9b838bf2d4254511f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>CLFM</topic><topic>Contrast Sensitivity - physiology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Intersection of constraints</topic><topic>IOC</topic><topic>Models, Psychological</topic><topic>Motion</topic><topic>Motion Perception - physiology</topic><topic>Time Factors</topic><topic>Vector average</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowns, Linda</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Vision research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowns, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taking the energy out of spatio-temporal energy models of human motion processing: The Component Level Feature Model</atitle><jtitle>Vision research (Oxford)</jtitle><addtitle>Vision Res</addtitle><date>2011-12-08</date><risdate>2011</risdate><volume>51</volume><issue>23</issue><spage>2425</spage><epage>2430</epage><pages>2425-2430</pages><issn>0042-6989</issn><eissn>1878-5646</eissn><coden>VISRAM</coden><abstract>► An extended explicit simulation of the Component Level Feature Model. ► CLFM accurately computes the IOC direction for 200 plaids without computing energy. ► Output is compared with critical psychophysical studies of perceived direction. ► Includes novel explanations for plaid motion not perceived in the IOC direction. Standard biologically inspired spatio-temporal energy models of how humans perceive moving two-dimensional patterns often have two critical stages. In the first stage, suitable filters are convolved with the pattern over time to extract information at the “component” level. Motion energy is then computed for each component. The second stage typically computes pattern velocity using the intersection of constraints rule (IOC). This paper describes a new implementation of the Component Level Feature Model ( Bowns, 2002) that computes motion direction that is similar to these two stages except that it does not compute motion energy. Here the model computes direction for 200 randomly generated plaids. The output linearly matched that predicted by the IOC. The model was also able to predict the perceived direction even when it deviated from the IOC due to the following variables – speed ratio ( Bowns, 1996); duration ( Yo &amp; Wilson, 1992); adaptation ( Bowns &amp; Alais, 2006). The model provides a novel explanation for each of the above and for why multiple directions can be represented for the same stimuli ( Bowns &amp; Alais, 2006); and why some second-order information attributed to non-linearities ( Derrington, Badcock, &amp; Holroyd, 1992) reverses perceived motion direction. Finally, CLFM is invariant to contrast and phase.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22005388</pmid><doi>10.1016/j.visres.2011.09.014</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-6989
ispartof Vision research (Oxford), 2011-12, Vol.51 (23), p.2425-2430
issn 0042-6989
1878-5646
language eng
recordid cdi_proquest_miscellaneous_912920757
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biological and medical sciences
CLFM
Contrast Sensitivity - physiology
Eye and associated structures. Visual pathways and centers. Vision
Fundamental and applied biological sciences. Psychology
Humans
Intersection of constraints
IOC
Models, Psychological
Motion
Motion Perception - physiology
Time Factors
Vector average
Vertebrates: nervous system and sense organs
title Taking the energy out of spatio-temporal energy models of human motion processing: The Component Level Feature Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taking%20the%20energy%20out%20of%20spatio-temporal%20energy%20models%20of%20human%20motion%20processing:%20The%20Component%20Level%20Feature%20Model&rft.jtitle=Vision%20research%20(Oxford)&rft.au=Bowns,%20Linda&rft.date=2011-12-08&rft.volume=51&rft.issue=23&rft.spage=2425&rft.epage=2430&rft.pages=2425-2430&rft.issn=0042-6989&rft.eissn=1878-5646&rft.coden=VISRAM&rft_id=info:doi/10.1016/j.visres.2011.09.014&rft_dat=%3Cproquest_cross%3E906556605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906556605&rft_id=info:pmid/22005388&rft_els_id=S0042698911003531&rfr_iscdi=true