Optimization Model for Solar Thermochemical Reactor: Efficiency Increase by a Nonuniform Heat Sink Distribution

This study focuses on thermochemical cavity-type reactor, with a reactive material directly irradiated by concentrated solar energy. General tendencies of reactor performance are analyzed as a function of the reactor geometry. The objective is to define a simplified model that can be adapted easily...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2011-08, Vol.133 (3)
Hauptverfasser: Tescari, S, Mazet, N, Neveu, P, Abanades, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on thermochemical cavity-type reactor, with a reactive material directly irradiated by concentrated solar energy. General tendencies of reactor performance are analyzed as a function of the reactor geometry. The objective is to define a simplified model that can be adapted easily to different reactor designs or different operating conditions. For this reason, the chemical reaction is not precisely fixed but rather characterized by a reaction temperature and a useful power consumed by the endothermic reaction, inside the reactive material. In order to increase the efficiency, two new reactor designs are proposed. These designs allow obtaining a nonuniform distribution of the useful power consumed by the reaction with the depth in a circular cylindrical cavity (z-axis). This is done in two ways: by varying the reactive material thickness along the axis or by varying its density at a constant thickness. The results show that these reactor concepts lead to a more uniform temperature distribution along the z-axis and a diminution of the heat losses. Thus, the reactor efficiency can increase significantly. The results of the simplified model can be used as a system predesign. A more accurate CFD model could be used afterward to refine the optimal shape.
ISSN:0199-6231
1528-8986
DOI:10.1115/1.4004271