Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes

Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant M. tuberculosis by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved in vitro . These mutations are associated with high competitive fitness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2012-01, Vol.44 (1), p.106-110
Hauptverfasser: Comas, Iñaki, Borrell, Sonia, Roetzer, Andreas, Rose, Graham, Malla, Bijaya, Kato-Maeda, Midori, Galagan, James, Niemann, Stefan, Gagneux, Sebastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 106
container_title Nature genetics
container_volume 44
creator Comas, Iñaki
Borrell, Sonia
Roetzer, Andreas
Rose, Graham
Malla, Bijaya
Kato-Maeda, Midori
Galagan, James
Niemann, Stefan
Gagneux, Sebastien
description Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant M. tuberculosis by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved in vitro . These mutations are associated with high competitive fitness in vitro and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis. Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts 1 . Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations 2 ; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations 3 , 4 , 5 , 6 . Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis , the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro . Moreover, these mutations were associated with high fitness in vivo , as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB 7 , more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB 8 .
doi_str_mv 10.1038/ng.1038
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_912917740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A276518146</galeid><sourcerecordid>A276518146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEomVBvAGyQAi4SLETr-1crioOlQqVyukymjjj4Cqxt7Yjse_AQ-NtF1atEEK-GI_nm7H_Xy6Kx4weMVqr1264ineKQ7bkomSSqbt5TwUrOa3FQfEgxgtKGedU3S8OqorJhtX8sPj57bsfsRzQ-QlJxMsZnbZuIN6QYA1Ma5vTMmC0MYFL5MNG-w50wmDniaS5w6Dn0ecyiSmAdZHYHl2yxmIk2k9rdBGSDxsyzQmS9VvCkfOPK7L242bCABFJfgDGh8U9A2PER7u4KL68ffP5-H15evbu5Hh1WmpRy1QyxhFp3zc5hX7ZyJ6KppNdp0wDXUWNQoCaghINMKgNl5VpaF_ppepASVUvihfXc9fBZ8ExtZONGscRHPo5tg2rGiZldm5RvPwnmU3nquK0ERl9egu98HNwWUeeJ0VdM1Vl6Nk1NMCIrXXGZ8_0dma7qqRYMsX4dtTRX6i8epys9g6Nzec3Gl7daMhMwh9pgDnG9uTT-f-zZ19vsjujdPAxBjTtOtgJwiYL32pXrRuuYiaf7NTP3YT9H-73T8vA8x0AUcNoAuR_FvfcUggmBN87HnPJDRj2Nt6-8xdZWe0R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917633182</pqid></control><display><type>article</type><title>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Comas, Iñaki ; Borrell, Sonia ; Roetzer, Andreas ; Rose, Graham ; Malla, Bijaya ; Kato-Maeda, Midori ; Galagan, James ; Niemann, Stefan ; Gagneux, Sebastien</creator><creatorcontrib>Comas, Iñaki ; Borrell, Sonia ; Roetzer, Andreas ; Rose, Graham ; Malla, Bijaya ; Kato-Maeda, Midori ; Galagan, James ; Niemann, Stefan ; Gagneux, Sebastien</creatorcontrib><description>Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant M. tuberculosis by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved in vitro . These mutations are associated with high competitive fitness in vitro and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis. Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts 1 . Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations 2 ; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations 3 , 4 , 5 , 6 . Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis , the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro . Moreover, these mutations were associated with high fitness in vivo , as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB 7 , more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB 8 .</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.1038</identifier><identifier>PMID: 22179134</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/325/2482 ; 631/208/514/1948 ; 631/326/41/1969/2038 ; 692/699/255/1856 ; Agriculture ; Animal Genetics and Genomics ; Bacteria ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; DNA sequencing ; DNA-Directed RNA Polymerases - genetics ; Drug resistance ; Drug resistance in microorganisms ; Drug Resistance, Bacterial - genetics ; Epidemics ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Gene mutations ; Genetic aspects ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Bacterial ; Health aspects ; Human Genetics ; Human populations ; letter ; Models, Molecular ; Mutation ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - genetics ; Nucleotide sequencing ; Rifampin - pharmacology ; Sequence Analysis, DNA ; Tuberculosis ; Tuberculosis, Multidrug-Resistant - epidemiology ; Tuberculosis, Multidrug-Resistant - genetics ; Tuberculosis, Multidrug-Resistant - microbiology</subject><ispartof>Nature genetics, 2012-01, Vol.44 (1), p.106-110</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</citedby><cites>FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.1038$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.1038$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25661664$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22179134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Comas, Iñaki</creatorcontrib><creatorcontrib>Borrell, Sonia</creatorcontrib><creatorcontrib>Roetzer, Andreas</creatorcontrib><creatorcontrib>Rose, Graham</creatorcontrib><creatorcontrib>Malla, Bijaya</creatorcontrib><creatorcontrib>Kato-Maeda, Midori</creatorcontrib><creatorcontrib>Galagan, James</creatorcontrib><creatorcontrib>Niemann, Stefan</creatorcontrib><creatorcontrib>Gagneux, Sebastien</creatorcontrib><title>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant M. tuberculosis by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved in vitro . These mutations are associated with high competitive fitness in vitro and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis. Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts 1 . Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations 2 ; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations 3 , 4 , 5 , 6 . Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis , the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro . Moreover, these mutations were associated with high fitness in vivo , as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB 7 , more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB 8 .</description><subject>631/208/325/2482</subject><subject>631/208/514/1948</subject><subject>631/326/41/1969/2038</subject><subject>692/699/255/1856</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>DNA sequencing</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Drug resistance</subject><subject>Drug resistance in microorganisms</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Epidemics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Bacterial</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Human populations</subject><subject>letter</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Nucleotide sequencing</subject><subject>Rifampin - pharmacology</subject><subject>Sequence Analysis, DNA</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Multidrug-Resistant - epidemiology</subject><subject>Tuberculosis, Multidrug-Resistant - genetics</subject><subject>Tuberculosis, Multidrug-Resistant - microbiology</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkttu1DAQhiMEomVBvAGyQAi4SLETr-1crioOlQqVyukymjjj4Cqxt7Yjse_AQ-NtF1atEEK-GI_nm7H_Xy6Kx4weMVqr1264ineKQ7bkomSSqbt5TwUrOa3FQfEgxgtKGedU3S8OqorJhtX8sPj57bsfsRzQ-QlJxMsZnbZuIN6QYA1Ma5vTMmC0MYFL5MNG-w50wmDniaS5w6Dn0ecyiSmAdZHYHl2yxmIk2k9rdBGSDxsyzQmS9VvCkfOPK7L242bCABFJfgDGh8U9A2PER7u4KL68ffP5-H15evbu5Hh1WmpRy1QyxhFp3zc5hX7ZyJ6KppNdp0wDXUWNQoCaghINMKgNl5VpaF_ppepASVUvihfXc9fBZ8ExtZONGscRHPo5tg2rGiZldm5RvPwnmU3nquK0ERl9egu98HNwWUeeJ0VdM1Vl6Nk1NMCIrXXGZ8_0dma7qqRYMsX4dtTRX6i8epys9g6Nzec3Gl7daMhMwh9pgDnG9uTT-f-zZ19vsjujdPAxBjTtOtgJwiYL32pXrRuuYiaf7NTP3YT9H-73T8vA8x0AUcNoAuR_FvfcUggmBN87HnPJDRj2Nt6-8xdZWe0R</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Comas, Iñaki</creator><creator>Borrell, Sonia</creator><creator>Roetzer, Andreas</creator><creator>Rose, Graham</creator><creator>Malla, Bijaya</creator><creator>Kato-Maeda, Midori</creator><creator>Galagan, James</creator><creator>Niemann, Stefan</creator><creator>Gagneux, Sebastien</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</title><author>Comas, Iñaki ; Borrell, Sonia ; Roetzer, Andreas ; Rose, Graham ; Malla, Bijaya ; Kato-Maeda, Midori ; Galagan, James ; Niemann, Stefan ; Gagneux, Sebastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/208/325/2482</topic><topic>631/208/514/1948</topic><topic>631/326/41/1969/2038</topic><topic>692/699/255/1856</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>DNA sequencing</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Drug resistance</topic><topic>Drug resistance in microorganisms</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Epidemics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Bacterial</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Human populations</topic><topic>letter</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Nucleotide sequencing</topic><topic>Rifampin - pharmacology</topic><topic>Sequence Analysis, DNA</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Multidrug-Resistant - epidemiology</topic><topic>Tuberculosis, Multidrug-Resistant - genetics</topic><topic>Tuberculosis, Multidrug-Resistant - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comas, Iñaki</creatorcontrib><creatorcontrib>Borrell, Sonia</creatorcontrib><creatorcontrib>Roetzer, Andreas</creatorcontrib><creatorcontrib>Rose, Graham</creatorcontrib><creatorcontrib>Malla, Bijaya</creatorcontrib><creatorcontrib>Kato-Maeda, Midori</creatorcontrib><creatorcontrib>Galagan, James</creatorcontrib><creatorcontrib>Niemann, Stefan</creatorcontrib><creatorcontrib>Gagneux, Sebastien</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Comas, Iñaki</au><au>Borrell, Sonia</au><au>Roetzer, Andreas</au><au>Rose, Graham</au><au>Malla, Bijaya</au><au>Kato-Maeda, Midori</au><au>Galagan, James</au><au>Niemann, Stefan</au><au>Gagneux, Sebastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>44</volume><issue>1</issue><spage>106</spage><epage>110</epage><pages>106-110</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant M. tuberculosis by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved in vitro . These mutations are associated with high competitive fitness in vitro and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis. Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts 1 . Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations 2 ; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations 3 , 4 , 5 , 6 . Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis , the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro . Moreover, these mutations were associated with high fitness in vivo , as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB 7 , more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB 8 .</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22179134</pmid><doi>10.1038/ng.1038</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2012-01, Vol.44 (1), p.106-110
issn 1061-4036
1546-1718
1546-1718
language eng
recordid cdi_proquest_miscellaneous_912917740
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/208/325/2482
631/208/514/1948
631/326/41/1969/2038
692/699/255/1856
Agriculture
Animal Genetics and Genomics
Bacteria
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Cancer Research
DNA sequencing
DNA-Directed RNA Polymerases - genetics
Drug resistance
Drug resistance in microorganisms
Drug Resistance, Bacterial - genetics
Epidemics
Fundamental and applied biological sciences. Psychology
Gene Function
Gene mutations
Genetic aspects
Genetics of eukaryotes. Biological and molecular evolution
Genome, Bacterial
Health aspects
Human Genetics
Human populations
letter
Models, Molecular
Mutation
Mycobacterium tuberculosis
Mycobacterium tuberculosis - drug effects
Mycobacterium tuberculosis - genetics
Nucleotide sequencing
Rifampin - pharmacology
Sequence Analysis, DNA
Tuberculosis
Tuberculosis, Multidrug-Resistant - epidemiology
Tuberculosis, Multidrug-Resistant - genetics
Tuberculosis, Multidrug-Resistant - microbiology
title Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-genome%20sequencing%20of%20rifampicin-resistant%20Mycobacterium%20tuberculosis%20strains%20identifies%20compensatory%20mutations%20in%20RNA%20polymerase%20genes&rft.jtitle=Nature%20genetics&rft.au=Comas,%20I%C3%B1aki&rft.date=2012-01-01&rft.volume=44&rft.issue=1&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng.1038&rft_dat=%3Cgale_proqu%3EA276518146%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917633182&rft_id=info:pmid/22179134&rft_galeid=A276518146&rfr_iscdi=true