Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes
Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant M. tuberculosis by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved in vitro . These mutations are associated with high competitive fitness...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2012-01, Vol.44 (1), p.106-110 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 106 |
container_title | Nature genetics |
container_volume | 44 |
creator | Comas, Iñaki Borrell, Sonia Roetzer, Andreas Rose, Graham Malla, Bijaya Kato-Maeda, Midori Galagan, James Niemann, Stefan Gagneux, Sebastien |
description | Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant
M. tuberculosis
by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved
in vitro
. These mutations are associated with high competitive fitness
in vitro
and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis.
Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts
1
. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations
2
; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations
3
,
4
,
5
,
6
. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant
M. tuberculosis
, the etiologic agent of human tuberculosis (TB).
M. tuberculosis
strains harboring these compensatory mutations showed a high competitive fitness
in vitro
. Moreover, these mutations were associated with high fitness
in vivo
, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB
7
, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB
8
. |
doi_str_mv | 10.1038/ng.1038 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_912917740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A276518146</galeid><sourcerecordid>A276518146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEomVBvAGyQAi4SLETr-1crioOlQqVyukymjjj4Cqxt7Yjse_AQ-NtF1atEEK-GI_nm7H_Xy6Kx4weMVqr1264ineKQ7bkomSSqbt5TwUrOa3FQfEgxgtKGedU3S8OqorJhtX8sPj57bsfsRzQ-QlJxMsZnbZuIN6QYA1Ma5vTMmC0MYFL5MNG-w50wmDniaS5w6Dn0ecyiSmAdZHYHl2yxmIk2k9rdBGSDxsyzQmS9VvCkfOPK7L242bCABFJfgDGh8U9A2PER7u4KL68ffP5-H15evbu5Hh1WmpRy1QyxhFp3zc5hX7ZyJ6KppNdp0wDXUWNQoCaghINMKgNl5VpaF_ppepASVUvihfXc9fBZ8ExtZONGscRHPo5tg2rGiZldm5RvPwnmU3nquK0ERl9egu98HNwWUeeJ0VdM1Vl6Nk1NMCIrXXGZ8_0dma7qqRYMsX4dtTRX6i8epys9g6Nzec3Gl7daMhMwh9pgDnG9uTT-f-zZ19vsjujdPAxBjTtOtgJwiYL32pXrRuuYiaf7NTP3YT9H-73T8vA8x0AUcNoAuR_FvfcUggmBN87HnPJDRj2Nt6-8xdZWe0R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917633182</pqid></control><display><type>article</type><title>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Comas, Iñaki ; Borrell, Sonia ; Roetzer, Andreas ; Rose, Graham ; Malla, Bijaya ; Kato-Maeda, Midori ; Galagan, James ; Niemann, Stefan ; Gagneux, Sebastien</creator><creatorcontrib>Comas, Iñaki ; Borrell, Sonia ; Roetzer, Andreas ; Rose, Graham ; Malla, Bijaya ; Kato-Maeda, Midori ; Galagan, James ; Niemann, Stefan ; Gagneux, Sebastien</creatorcontrib><description>Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant
M. tuberculosis
by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved
in vitro
. These mutations are associated with high competitive fitness
in vitro
and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis.
Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts
1
. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations
2
; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations
3
,
4
,
5
,
6
. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant
M. tuberculosis
, the etiologic agent of human tuberculosis (TB).
M. tuberculosis
strains harboring these compensatory mutations showed a high competitive fitness
in vitro
. Moreover, these mutations were associated with high fitness
in vivo
, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB
7
, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB
8
.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.1038</identifier><identifier>PMID: 22179134</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/325/2482 ; 631/208/514/1948 ; 631/326/41/1969/2038 ; 692/699/255/1856 ; Agriculture ; Animal Genetics and Genomics ; Bacteria ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; DNA sequencing ; DNA-Directed RNA Polymerases - genetics ; Drug resistance ; Drug resistance in microorganisms ; Drug Resistance, Bacterial - genetics ; Epidemics ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Gene mutations ; Genetic aspects ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Bacterial ; Health aspects ; Human Genetics ; Human populations ; letter ; Models, Molecular ; Mutation ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - genetics ; Nucleotide sequencing ; Rifampin - pharmacology ; Sequence Analysis, DNA ; Tuberculosis ; Tuberculosis, Multidrug-Resistant - epidemiology ; Tuberculosis, Multidrug-Resistant - genetics ; Tuberculosis, Multidrug-Resistant - microbiology</subject><ispartof>Nature genetics, 2012-01, Vol.44 (1), p.106-110</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</citedby><cites>FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.1038$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.1038$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25661664$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22179134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Comas, Iñaki</creatorcontrib><creatorcontrib>Borrell, Sonia</creatorcontrib><creatorcontrib>Roetzer, Andreas</creatorcontrib><creatorcontrib>Rose, Graham</creatorcontrib><creatorcontrib>Malla, Bijaya</creatorcontrib><creatorcontrib>Kato-Maeda, Midori</creatorcontrib><creatorcontrib>Galagan, James</creatorcontrib><creatorcontrib>Niemann, Stefan</creatorcontrib><creatorcontrib>Gagneux, Sebastien</creatorcontrib><title>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant
M. tuberculosis
by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved
in vitro
. These mutations are associated with high competitive fitness
in vitro
and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis.
Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts
1
. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations
2
; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations
3
,
4
,
5
,
6
. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant
M. tuberculosis
, the etiologic agent of human tuberculosis (TB).
M. tuberculosis
strains harboring these compensatory mutations showed a high competitive fitness
in vitro
. Moreover, these mutations were associated with high fitness
in vivo
, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB
7
, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB
8
.</description><subject>631/208/325/2482</subject><subject>631/208/514/1948</subject><subject>631/326/41/1969/2038</subject><subject>692/699/255/1856</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>DNA sequencing</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Drug resistance</subject><subject>Drug resistance in microorganisms</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Epidemics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Bacterial</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Human populations</subject><subject>letter</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Nucleotide sequencing</subject><subject>Rifampin - pharmacology</subject><subject>Sequence Analysis, DNA</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Multidrug-Resistant - epidemiology</subject><subject>Tuberculosis, Multidrug-Resistant - genetics</subject><subject>Tuberculosis, Multidrug-Resistant - microbiology</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkttu1DAQhiMEomVBvAGyQAi4SLETr-1crioOlQqVyukymjjj4Cqxt7Yjse_AQ-NtF1atEEK-GI_nm7H_Xy6Kx4weMVqr1264ineKQ7bkomSSqbt5TwUrOa3FQfEgxgtKGedU3S8OqorJhtX8sPj57bsfsRzQ-QlJxMsZnbZuIN6QYA1Ma5vTMmC0MYFL5MNG-w50wmDniaS5w6Dn0ecyiSmAdZHYHl2yxmIk2k9rdBGSDxsyzQmS9VvCkfOPK7L242bCABFJfgDGh8U9A2PER7u4KL68ffP5-H15evbu5Hh1WmpRy1QyxhFp3zc5hX7ZyJ6KppNdp0wDXUWNQoCaghINMKgNl5VpaF_ppepASVUvihfXc9fBZ8ExtZONGscRHPo5tg2rGiZldm5RvPwnmU3nquK0ERl9egu98HNwWUeeJ0VdM1Vl6Nk1NMCIrXXGZ8_0dma7qqRYMsX4dtTRX6i8epys9g6Nzec3Gl7daMhMwh9pgDnG9uTT-f-zZ19vsjujdPAxBjTtOtgJwiYL32pXrRuuYiaf7NTP3YT9H-73T8vA8x0AUcNoAuR_FvfcUggmBN87HnPJDRj2Nt6-8xdZWe0R</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Comas, Iñaki</creator><creator>Borrell, Sonia</creator><creator>Roetzer, Andreas</creator><creator>Rose, Graham</creator><creator>Malla, Bijaya</creator><creator>Kato-Maeda, Midori</creator><creator>Galagan, James</creator><creator>Niemann, Stefan</creator><creator>Gagneux, Sebastien</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</title><author>Comas, Iñaki ; Borrell, Sonia ; Roetzer, Andreas ; Rose, Graham ; Malla, Bijaya ; Kato-Maeda, Midori ; Galagan, James ; Niemann, Stefan ; Gagneux, Sebastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-114ee0dd9c63ad597d069b7bb8f9ab20f8eaa30a869a1a3f472f90d2c58ba8783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/208/325/2482</topic><topic>631/208/514/1948</topic><topic>631/326/41/1969/2038</topic><topic>692/699/255/1856</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>DNA sequencing</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Drug resistance</topic><topic>Drug resistance in microorganisms</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Epidemics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Bacterial</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Human populations</topic><topic>letter</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Nucleotide sequencing</topic><topic>Rifampin - pharmacology</topic><topic>Sequence Analysis, DNA</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Multidrug-Resistant - epidemiology</topic><topic>Tuberculosis, Multidrug-Resistant - genetics</topic><topic>Tuberculosis, Multidrug-Resistant - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comas, Iñaki</creatorcontrib><creatorcontrib>Borrell, Sonia</creatorcontrib><creatorcontrib>Roetzer, Andreas</creatorcontrib><creatorcontrib>Rose, Graham</creatorcontrib><creatorcontrib>Malla, Bijaya</creatorcontrib><creatorcontrib>Kato-Maeda, Midori</creatorcontrib><creatorcontrib>Galagan, James</creatorcontrib><creatorcontrib>Niemann, Stefan</creatorcontrib><creatorcontrib>Gagneux, Sebastien</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Comas, Iñaki</au><au>Borrell, Sonia</au><au>Roetzer, Andreas</au><au>Rose, Graham</au><au>Malla, Bijaya</au><au>Kato-Maeda, Midori</au><au>Galagan, James</au><au>Niemann, Stefan</au><au>Gagneux, Sebastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>44</volume><issue>1</issue><spage>106</spage><epage>110</epage><pages>106-110</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Sebastien Gagneux and colleagues identify a set of compensatory mutations in the RNA polymerase of rifampicin-resistant
M. tuberculosis
by comparing the whole-genome sequences of ten paired clinical isolates and strains evolved
in vitro
. These mutations are associated with high competitive fitness
in vitro
and occur with increased clinical frequency in affected populations with a high burden of drug-resistant tuberculosis.
Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts
1
. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations
2
; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations
3
,
4
,
5
,
6
. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant
M. tuberculosis
, the etiologic agent of human tuberculosis (TB).
M. tuberculosis
strains harboring these compensatory mutations showed a high competitive fitness
in vitro
. Moreover, these mutations were associated with high fitness
in vivo
, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB
7
, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB
8
.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22179134</pmid><doi>10.1038/ng.1038</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2012-01, Vol.44 (1), p.106-110 |
issn | 1061-4036 1546-1718 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_912917740 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/208/325/2482 631/208/514/1948 631/326/41/1969/2038 692/699/255/1856 Agriculture Animal Genetics and Genomics Bacteria Biological and medical sciences Biomedical and Life Sciences Biomedicine Cancer Research DNA sequencing DNA-Directed RNA Polymerases - genetics Drug resistance Drug resistance in microorganisms Drug Resistance, Bacterial - genetics Epidemics Fundamental and applied biological sciences. Psychology Gene Function Gene mutations Genetic aspects Genetics of eukaryotes. Biological and molecular evolution Genome, Bacterial Health aspects Human Genetics Human populations letter Models, Molecular Mutation Mycobacterium tuberculosis Mycobacterium tuberculosis - drug effects Mycobacterium tuberculosis - genetics Nucleotide sequencing Rifampin - pharmacology Sequence Analysis, DNA Tuberculosis Tuberculosis, Multidrug-Resistant - epidemiology Tuberculosis, Multidrug-Resistant - genetics Tuberculosis, Multidrug-Resistant - microbiology |
title | Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-genome%20sequencing%20of%20rifampicin-resistant%20Mycobacterium%20tuberculosis%20strains%20identifies%20compensatory%20mutations%20in%20RNA%20polymerase%20genes&rft.jtitle=Nature%20genetics&rft.au=Comas,%20I%C3%B1aki&rft.date=2012-01-01&rft.volume=44&rft.issue=1&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng.1038&rft_dat=%3Cgale_proqu%3EA276518146%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917633182&rft_id=info:pmid/22179134&rft_galeid=A276518146&rfr_iscdi=true |