Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst
The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transforma...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2011-12, Vol.334 (6063), p.1681-1684 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1684 |
---|---|
container_issue | 6063 |
container_start_page | 1681 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 334 |
creator | Rauniyar, Vivek Lackner, Aaron D. Hamilton, Gregory L. Toste, F. Dean |
description | The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates. |
doi_str_mv | 10.1126/science.1213918 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_912644680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352303</jstor_id><sourcerecordid>41352303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaLZpzz01mEJpLk40kmxLx2VJ2kAgPWTPRtZKXS2yvNHYh_331bJuAjn0NAzvmzfMPEK-AL0GYPUNGm-jsdfAgCuQ78gCqKpKxSh_TxaU8rqUtKnOyUfEHaVZU_wDOWcMlKgaWJD1Eg99b8fkTXEbrBnTsN_6kLu7MA3JRz36IRZr9PFPoWOxjLnN6mrrkw7F761GWz4lHdHZVKz0qMMBx0_kzOmA9vNcL8j67vZp9at8ePx5v1o-lEY0Yiwbqx2tjewkE7VxG2WUMo5ytnGN2oCqeGcrA4o6wUzjOGeKuY5yyTqpG2r4Bflx8t2n4XmyOLa9R2ND0NEOE7Yq_0iIWtJMXv2XBApUKgAFGf32Bt0NU4r5jqOfEFzWVYZuTpBJA2Kyrt0n3-t0yE7tMZp2jqado8kTl7Pt1PV288L_yyID32dAo9HB5acaj69cxZuas-Pqryduh-OQXnQBvGKccv4XOkmg7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912443865</pqid></control><display><type>article</type><title>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Rauniyar, Vivek ; Lackner, Aaron D. ; Hamilton, Gregory L. ; Toste, F. Dean</creator><creatorcontrib>Rauniyar, Vivek ; Lackner, Aaron D. ; Hamilton, Gregory L. ; Toste, F. Dean</creatorcontrib><description>The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1213918</identifier><identifier>PMID: 22194571</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Alkenes ; Anions ; Asymmetry ; Catalysis ; Catalysts ; Catalysts: preparations and properties ; Cationic ; Cations ; Chemistry ; Chemists ; Construction ; Exact sciences and technology ; Fluorination ; Fluorine ; General and physical chemistry ; Kinetics and mechanisms ; Molecules ; Olefins ; Organic chemistry ; Organometalloidal and organometallic compounds ; P derivatives ; Phase transitions ; Phosphates ; Preparations and properties ; Reactivity ; Reactivity and mechanisms ; Reagents ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transformations</subject><ispartof>Science (American Association for the Advancement of Science), 2011-12, Vol.334 (6063), p.1681-1684</ispartof><rights>Copyright © 2011 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</citedby><cites>FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352303$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352303$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25376325$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rauniyar, Vivek</creatorcontrib><creatorcontrib>Lackner, Aaron D.</creatorcontrib><creatorcontrib>Hamilton, Gregory L.</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><title>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.</description><subject>Alkenes</subject><subject>Anions</subject><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalysts: preparations and properties</subject><subject>Cationic</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Chemists</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanisms</subject><subject>Molecules</subject><subject>Olefins</subject><subject>Organic chemistry</subject><subject>Organometalloidal and organometallic compounds</subject><subject>P derivatives</subject><subject>Phase transitions</subject><subject>Phosphates</subject><subject>Preparations and properties</subject><subject>Reactivity</subject><subject>Reactivity and mechanisms</subject><subject>Reagents</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transformations</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpaLZpzz01mEJpLk40kmxLx2VJ2kAgPWTPRtZKXS2yvNHYh_331bJuAjn0NAzvmzfMPEK-AL0GYPUNGm-jsdfAgCuQ78gCqKpKxSh_TxaU8rqUtKnOyUfEHaVZU_wDOWcMlKgaWJD1Eg99b8fkTXEbrBnTsN_6kLu7MA3JRz36IRZr9PFPoWOxjLnN6mrrkw7F761GWz4lHdHZVKz0qMMBx0_kzOmA9vNcL8j67vZp9at8ePx5v1o-lEY0Yiwbqx2tjewkE7VxG2WUMo5ytnGN2oCqeGcrA4o6wUzjOGeKuY5yyTqpG2r4Bflx8t2n4XmyOLa9R2ND0NEOE7Yq_0iIWtJMXv2XBApUKgAFGf32Bt0NU4r5jqOfEFzWVYZuTpBJA2Kyrt0n3-t0yE7tMZp2jqado8kTl7Pt1PV288L_yyID32dAo9HB5acaj69cxZuas-Pqryduh-OQXnQBvGKccv4XOkmg7Q</recordid><startdate>20111223</startdate><enddate>20111223</enddate><creator>Rauniyar, Vivek</creator><creator>Lackner, Aaron D.</creator><creator>Hamilton, Gregory L.</creator><creator>Toste, F. Dean</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111223</creationdate><title>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</title><author>Rauniyar, Vivek ; Lackner, Aaron D. ; Hamilton, Gregory L. ; Toste, F. Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkenes</topic><topic>Anions</topic><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalysts: preparations and properties</topic><topic>Cationic</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Chemists</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanisms</topic><topic>Molecules</topic><topic>Olefins</topic><topic>Organic chemistry</topic><topic>Organometalloidal and organometallic compounds</topic><topic>P derivatives</topic><topic>Phase transitions</topic><topic>Phosphates</topic><topic>Preparations and properties</topic><topic>Reactivity</topic><topic>Reactivity and mechanisms</topic><topic>Reagents</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rauniyar, Vivek</creatorcontrib><creatorcontrib>Lackner, Aaron D.</creatorcontrib><creatorcontrib>Hamilton, Gregory L.</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rauniyar, Vivek</au><au>Lackner, Aaron D.</au><au>Hamilton, Gregory L.</au><au>Toste, F. Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-12-23</date><risdate>2011</risdate><volume>334</volume><issue>6063</issue><spage>1681</spage><epage>1684</epage><pages>1681-1684</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22194571</pmid><doi>10.1126/science.1213918</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2011-12, Vol.334 (6063), p.1681-1684 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_912644680 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Alkenes Anions Asymmetry Catalysis Catalysts Catalysts: preparations and properties Cationic Cations Chemistry Chemists Construction Exact sciences and technology Fluorination Fluorine General and physical chemistry Kinetics and mechanisms Molecules Olefins Organic chemistry Organometalloidal and organometallic compounds P derivatives Phase transitions Phosphates Preparations and properties Reactivity Reactivity and mechanisms Reagents Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Transformations |
title | Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Electrophilic%20Fluorination%20Using%20an%20Anionic%20Chiral%20Phase-Transfer%20Catalyst&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Rauniyar,%20Vivek&rft.date=2011-12-23&rft.volume=334&rft.issue=6063&rft.spage=1681&rft.epage=1684&rft.pages=1681-1684&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1213918&rft_dat=%3Cjstor_proqu%3E41352303%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912443865&rft_id=info:pmid/22194571&rft_jstor_id=41352303&rfr_iscdi=true |