Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst

The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transforma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2011-12, Vol.334 (6063), p.1681-1684
Hauptverfasser: Rauniyar, Vivek, Lackner, Aaron D., Hamilton, Gregory L., Toste, F. Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1684
container_issue 6063
container_start_page 1681
container_title Science (American Association for the Advancement of Science)
container_volume 334
creator Rauniyar, Vivek
Lackner, Aaron D.
Hamilton, Gregory L.
Toste, F. Dean
description The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.
doi_str_mv 10.1126/science.1213918
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_912644680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352303</jstor_id><sourcerecordid>41352303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaLZpzz01mEJpLk40kmxLx2VJ2kAgPWTPRtZKXS2yvNHYh_331bJuAjn0NAzvmzfMPEK-AL0GYPUNGm-jsdfAgCuQ78gCqKpKxSh_TxaU8rqUtKnOyUfEHaVZU_wDOWcMlKgaWJD1Eg99b8fkTXEbrBnTsN_6kLu7MA3JRz36IRZr9PFPoWOxjLnN6mrrkw7F761GWz4lHdHZVKz0qMMBx0_kzOmA9vNcL8j67vZp9at8ePx5v1o-lEY0Yiwbqx2tjewkE7VxG2WUMo5ytnGN2oCqeGcrA4o6wUzjOGeKuY5yyTqpG2r4Bflx8t2n4XmyOLa9R2ND0NEOE7Yq_0iIWtJMXv2XBApUKgAFGf32Bt0NU4r5jqOfEFzWVYZuTpBJA2Kyrt0n3-t0yE7tMZp2jqado8kTl7Pt1PV288L_yyID32dAo9HB5acaj69cxZuas-Pqryduh-OQXnQBvGKccv4XOkmg7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912443865</pqid></control><display><type>article</type><title>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Rauniyar, Vivek ; Lackner, Aaron D. ; Hamilton, Gregory L. ; Toste, F. Dean</creator><creatorcontrib>Rauniyar, Vivek ; Lackner, Aaron D. ; Hamilton, Gregory L. ; Toste, F. Dean</creatorcontrib><description>The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1213918</identifier><identifier>PMID: 22194571</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Alkenes ; Anions ; Asymmetry ; Catalysis ; Catalysts ; Catalysts: preparations and properties ; Cationic ; Cations ; Chemistry ; Chemists ; Construction ; Exact sciences and technology ; Fluorination ; Fluorine ; General and physical chemistry ; Kinetics and mechanisms ; Molecules ; Olefins ; Organic chemistry ; Organometalloidal and organometallic compounds ; P derivatives ; Phase transitions ; Phosphates ; Preparations and properties ; Reactivity ; Reactivity and mechanisms ; Reagents ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transformations</subject><ispartof>Science (American Association for the Advancement of Science), 2011-12, Vol.334 (6063), p.1681-1684</ispartof><rights>Copyright © 2011 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</citedby><cites>FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352303$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352303$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25376325$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rauniyar, Vivek</creatorcontrib><creatorcontrib>Lackner, Aaron D.</creatorcontrib><creatorcontrib>Hamilton, Gregory L.</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><title>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.</description><subject>Alkenes</subject><subject>Anions</subject><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalysts: preparations and properties</subject><subject>Cationic</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Chemists</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanisms</subject><subject>Molecules</subject><subject>Olefins</subject><subject>Organic chemistry</subject><subject>Organometalloidal and organometallic compounds</subject><subject>P derivatives</subject><subject>Phase transitions</subject><subject>Phosphates</subject><subject>Preparations and properties</subject><subject>Reactivity</subject><subject>Reactivity and mechanisms</subject><subject>Reagents</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transformations</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpaLZpzz01mEJpLk40kmxLx2VJ2kAgPWTPRtZKXS2yvNHYh_331bJuAjn0NAzvmzfMPEK-AL0GYPUNGm-jsdfAgCuQ78gCqKpKxSh_TxaU8rqUtKnOyUfEHaVZU_wDOWcMlKgaWJD1Eg99b8fkTXEbrBnTsN_6kLu7MA3JRz36IRZr9PFPoWOxjLnN6mrrkw7F761GWz4lHdHZVKz0qMMBx0_kzOmA9vNcL8j67vZp9at8ePx5v1o-lEY0Yiwbqx2tjewkE7VxG2WUMo5ytnGN2oCqeGcrA4o6wUzjOGeKuY5yyTqpG2r4Bflx8t2n4XmyOLa9R2ND0NEOE7Yq_0iIWtJMXv2XBApUKgAFGf32Bt0NU4r5jqOfEFzWVYZuTpBJA2Kyrt0n3-t0yE7tMZp2jqado8kTl7Pt1PV288L_yyID32dAo9HB5acaj69cxZuas-Pqryduh-OQXnQBvGKccv4XOkmg7Q</recordid><startdate>20111223</startdate><enddate>20111223</enddate><creator>Rauniyar, Vivek</creator><creator>Lackner, Aaron D.</creator><creator>Hamilton, Gregory L.</creator><creator>Toste, F. Dean</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111223</creationdate><title>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</title><author>Rauniyar, Vivek ; Lackner, Aaron D. ; Hamilton, Gregory L. ; Toste, F. Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7eaf06c8b8246cfd9c99cf032df79d1953be5c190f42c7f33292fb0382b8a70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkenes</topic><topic>Anions</topic><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalysts: preparations and properties</topic><topic>Cationic</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Chemists</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanisms</topic><topic>Molecules</topic><topic>Olefins</topic><topic>Organic chemistry</topic><topic>Organometalloidal and organometallic compounds</topic><topic>P derivatives</topic><topic>Phase transitions</topic><topic>Phosphates</topic><topic>Preparations and properties</topic><topic>Reactivity</topic><topic>Reactivity and mechanisms</topic><topic>Reagents</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rauniyar, Vivek</creatorcontrib><creatorcontrib>Lackner, Aaron D.</creatorcontrib><creatorcontrib>Hamilton, Gregory L.</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rauniyar, Vivek</au><au>Lackner, Aaron D.</au><au>Hamilton, Gregory L.</au><au>Toste, F. Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-12-23</date><risdate>2011</risdate><volume>334</volume><issue>6063</issue><spage>1681</spage><epage>1684</epage><pages>1681-1684</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. Here, we present evidence that a largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is applied to the enantioselective fluorocyclization of olefins with a cationic fluorinating agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity, especially considering the scarcity of alternative approaches. This technology can in principle be applied to the large portion of reaction space that uses positively charged reagents and reaction intermediates.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22194571</pmid><doi>10.1126/science.1213918</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2011-12, Vol.334 (6063), p.1681-1684
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_912644680
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Alkenes
Anions
Asymmetry
Catalysis
Catalysts
Catalysts: preparations and properties
Cationic
Cations
Chemistry
Chemists
Construction
Exact sciences and technology
Fluorination
Fluorine
General and physical chemistry
Kinetics and mechanisms
Molecules
Olefins
Organic chemistry
Organometalloidal and organometallic compounds
P derivatives
Phase transitions
Phosphates
Preparations and properties
Reactivity
Reactivity and mechanisms
Reagents
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Transformations
title Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Electrophilic%20Fluorination%20Using%20an%20Anionic%20Chiral%20Phase-Transfer%20Catalyst&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Rauniyar,%20Vivek&rft.date=2011-12-23&rft.volume=334&rft.issue=6063&rft.spage=1681&rft.epage=1684&rft.pages=1681-1684&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1213918&rft_dat=%3Cjstor_proqu%3E41352303%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912443865&rft_id=info:pmid/22194571&rft_jstor_id=41352303&rfr_iscdi=true