Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo

Background & Aims The mammalian target of rapamycin (mTOR) plays a pivotal role in hepatocellular carcinoma (HCC). Previous studies indicated that inhibition of mTORC1 enhanced histone deacetylase inhibitors (HDACis)-mediated anti-tumor activity, accompanied with feedback activation of AKT. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hepatology 2012-01, Vol.56 (1), p.176-183
Hauptverfasser: Shao, Huanjie, Gao, Chun, Tang, Haikuo, Zhang, Hao, Roberts, Lewis R, Hylander, Bonnie L, Repasky, Elizabeth A, Ma, Wen W, Qiu, Jingxin, Adjei, Alex A, Dy, Grace K, Yu, Chunrong
Format: Artikel
Sprache:eng
Schlagworte:
AKT
Bim
HCC
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 176
container_title Journal of hepatology
container_volume 56
creator Shao, Huanjie
Gao, Chun
Tang, Haikuo
Zhang, Hao
Roberts, Lewis R
Hylander, Bonnie L
Repasky, Elizabeth A
Ma, Wen W
Qiu, Jingxin
Adjei, Alex A
Dy, Grace K
Yu, Chunrong
description Background & Aims The mammalian target of rapamycin (mTOR) plays a pivotal role in hepatocellular carcinoma (HCC). Previous studies indicated that inhibition of mTORC1 enhanced histone deacetylase inhibitors (HDACis)-mediated anti-tumor activity, accompanied with feedback activation of AKT. Therefore, dual targeting of mTORC1/C2 should be more efficient in suppressing AKT activity and in enhancing the anti-tumor activity of HDACi in HCC. Methods The interactions between mTOR kinase inhibitors (mTORKis) (i.e., Pp242, AZD8055, OSI027) and HDACis (i.e., SAHA, LBH589) were examined in vitro using HCC cell lines and in vivo using patient-derived primary HCC xenografts on SCID mice. Results mTORKis significantly enhanced HDACi-induced apoptosis in HCC cells. The inhibition of both mTORC1/2 not only efficiently blocked mTORC1 signaling, but also abrogated AKT-feedback activation caused by selective mTORC1 inhibition. The co-treatment of mTORKi and HDACi further inhibited AKT signaling and upregulated Bim. Dysfunction of mTORC2 by shRNA significantly lowered the threshold of HDACi-induced cytotoxicity by abrogating AKT activation. Knockdown of AKT1 sensitized Pp242/HDACi-induced apoptosis and ectopic expression of constitutively active AKT1 abrogated the combination-induced cytotoxicity, indicating AKT plays a vital role in the combination-induced effects. Knockdown of Bim prevented Pp242/HDACis-induced cytotoxicity in HCC. Lastly, in vivo studies indicated that the combination of AZD8055 and SAHA almost completely inhibited tumor-growth, without obvious adverse effects, by abrogating AKT and upregulating Bim; while either agent alone shows only 30% inhibition in primary HCC xenografts. Conclusions Our findings suggest that a combining-regimen of mTORKi and HDACi may be an effective therapeutic strategy for HCC.
doi_str_mv 10.1016/j.jhep.2011.07.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911951797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0168827811005757</els_id><sourcerecordid>911951797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-ff3301814433de7b69960c67c58e7dceb8baf7b246aeefb55b4428a299563f6c3</originalsourceid><addsrcrecordid>eNp9kkuLFDEUhYMoTjv6B1xINuKqanLrlQqIIOVjhIEBHdchlbqZTltVaZNUY_8Pf7ApulVw4SoPvnNIzrmEPAeWA4PmapfvtrjPCwaQM54zKB-QDTSMZayp4CHZJKjN2oK3F-RJCDvGWMlE9ZhcFNCWNVSwIT_fLWqkUfl7jHa-p87Q6e72cwdXXUG1m_Yj_sBAcd6qWafN1oboZqQDKo3xOKqA1M5b29vofDbhYFXEgao52iwuk_MUjbFa6WPC6N7bSfkjve46qldDv94ebPQuSYbT4eCekkdGjQGfnddL8vXD-7vuOru5_fipe3uT6Zo1MTOmLBm0UFVlOSDvGyEaphuu6xb5oLFve2V4X1SNQjR9XfdVVbSqEKJuStPo8pK8Ovnuvfu-YIhyskHjOKoZ3RKkABA1cMETWZxI7V0IHo08f0UCk2sZcifXMuRahmRcpjKS6MXZfulTMn8kv9NPwMszoIJWo_EpEhv-cnUhGAiRuNcnDlMYB4teBm0xxTdYjzrKwdn_v-PNP3I92jmVMn7DI4adW_ycYpYgQyGZ_LKOzTo1AIzVvOblL29_vkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911951797</pqid></control><display><type>article</type><title>Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shao, Huanjie ; Gao, Chun ; Tang, Haikuo ; Zhang, Hao ; Roberts, Lewis R ; Hylander, Bonnie L ; Repasky, Elizabeth A ; Ma, Wen W ; Qiu, Jingxin ; Adjei, Alex A ; Dy, Grace K ; Yu, Chunrong</creator><creatorcontrib>Shao, Huanjie ; Gao, Chun ; Tang, Haikuo ; Zhang, Hao ; Roberts, Lewis R ; Hylander, Bonnie L ; Repasky, Elizabeth A ; Ma, Wen W ; Qiu, Jingxin ; Adjei, Alex A ; Dy, Grace K ; Yu, Chunrong</creatorcontrib><description>Background &amp; Aims The mammalian target of rapamycin (mTOR) plays a pivotal role in hepatocellular carcinoma (HCC). Previous studies indicated that inhibition of mTORC1 enhanced histone deacetylase inhibitors (HDACis)-mediated anti-tumor activity, accompanied with feedback activation of AKT. Therefore, dual targeting of mTORC1/C2 should be more efficient in suppressing AKT activity and in enhancing the anti-tumor activity of HDACi in HCC. Methods The interactions between mTOR kinase inhibitors (mTORKis) (i.e., Pp242, AZD8055, OSI027) and HDACis (i.e., SAHA, LBH589) were examined in vitro using HCC cell lines and in vivo using patient-derived primary HCC xenografts on SCID mice. Results mTORKis significantly enhanced HDACi-induced apoptosis in HCC cells. The inhibition of both mTORC1/2 not only efficiently blocked mTORC1 signaling, but also abrogated AKT-feedback activation caused by selective mTORC1 inhibition. The co-treatment of mTORKi and HDACi further inhibited AKT signaling and upregulated Bim. Dysfunction of mTORC2 by shRNA significantly lowered the threshold of HDACi-induced cytotoxicity by abrogating AKT activation. Knockdown of AKT1 sensitized Pp242/HDACi-induced apoptosis and ectopic expression of constitutively active AKT1 abrogated the combination-induced cytotoxicity, indicating AKT plays a vital role in the combination-induced effects. Knockdown of Bim prevented Pp242/HDACis-induced cytotoxicity in HCC. Lastly, in vivo studies indicated that the combination of AZD8055 and SAHA almost completely inhibited tumor-growth, without obvious adverse effects, by abrogating AKT and upregulating Bim; while either agent alone shows only 30% inhibition in primary HCC xenografts. Conclusions Our findings suggest that a combining-regimen of mTORKi and HDACi may be an effective therapeutic strategy for HCC.</description><identifier>ISSN: 0168-8278</identifier><identifier>EISSN: 1600-0641</identifier><identifier>DOI: 10.1016/j.jhep.2011.07.013</identifier><identifier>PMID: 21835141</identifier><identifier>CODEN: JOHEEC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject><![CDATA[AKT ; Animals ; Apoptosis ; Apoptosis Regulatory Proteins - antagonists & inhibitors ; Apoptosis Regulatory Proteins - genetics ; Apoptosis Regulatory Proteins - metabolism ; Base Sequence ; Bcl-2-Like Protein 11 ; Bim ; Biological and medical sciences ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Carcinoma, Hepatocellular - pathology ; Cell Death - drug effects ; Cell Line, Tumor ; Drug Synergism ; Female ; Gastroenterology and Hepatology ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene Knockdown Techniques ; HCC ; HDAC inhibitor ; Histone Deacetylase Inhibitors - administration & dosage ; Humans ; Liver Neoplasms - drug therapy ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Mechanistic Target of Rapamycin Complex 1 ; Medical sciences ; Membrane Proteins - antagonists & inhibitors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, SCID ; mTOR kinase inhibitor ; Multiprotein Complexes ; Proteins - antagonists & inhibitors ; Proto-Oncogene Proteins - antagonists & inhibitors ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt - antagonists & inhibitors ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; RNA, Small Interfering - genetics ; Signal Transduction - drug effects ; TOR Serine-Threonine Kinases ; Transcription Factors - antagonists & inhibitors ; Tumors ; Xenograft Model Antitumor Assays]]></subject><ispartof>Journal of hepatology, 2012-01, Vol.56 (1), p.176-183</ispartof><rights>European Association for the Study of the Liver</rights><rights>2011 European Association for the Study of the Liver</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-ff3301814433de7b69960c67c58e7dceb8baf7b246aeefb55b4428a299563f6c3</citedby><cites>FETCH-LOGICAL-c506t-ff3301814433de7b69960c67c58e7dceb8baf7b246aeefb55b4428a299563f6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhep.2011.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25290199$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21835141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Huanjie</creatorcontrib><creatorcontrib>Gao, Chun</creatorcontrib><creatorcontrib>Tang, Haikuo</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Roberts, Lewis R</creatorcontrib><creatorcontrib>Hylander, Bonnie L</creatorcontrib><creatorcontrib>Repasky, Elizabeth A</creatorcontrib><creatorcontrib>Ma, Wen W</creatorcontrib><creatorcontrib>Qiu, Jingxin</creatorcontrib><creatorcontrib>Adjei, Alex A</creatorcontrib><creatorcontrib>Dy, Grace K</creatorcontrib><creatorcontrib>Yu, Chunrong</creatorcontrib><title>Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo</title><title>Journal of hepatology</title><addtitle>J Hepatol</addtitle><description>Background &amp; Aims The mammalian target of rapamycin (mTOR) plays a pivotal role in hepatocellular carcinoma (HCC). Previous studies indicated that inhibition of mTORC1 enhanced histone deacetylase inhibitors (HDACis)-mediated anti-tumor activity, accompanied with feedback activation of AKT. Therefore, dual targeting of mTORC1/C2 should be more efficient in suppressing AKT activity and in enhancing the anti-tumor activity of HDACi in HCC. Methods The interactions between mTOR kinase inhibitors (mTORKis) (i.e., Pp242, AZD8055, OSI027) and HDACis (i.e., SAHA, LBH589) were examined in vitro using HCC cell lines and in vivo using patient-derived primary HCC xenografts on SCID mice. Results mTORKis significantly enhanced HDACi-induced apoptosis in HCC cells. The inhibition of both mTORC1/2 not only efficiently blocked mTORC1 signaling, but also abrogated AKT-feedback activation caused by selective mTORC1 inhibition. The co-treatment of mTORKi and HDACi further inhibited AKT signaling and upregulated Bim. Dysfunction of mTORC2 by shRNA significantly lowered the threshold of HDACi-induced cytotoxicity by abrogating AKT activation. Knockdown of AKT1 sensitized Pp242/HDACi-induced apoptosis and ectopic expression of constitutively active AKT1 abrogated the combination-induced cytotoxicity, indicating AKT plays a vital role in the combination-induced effects. Knockdown of Bim prevented Pp242/HDACis-induced cytotoxicity in HCC. Lastly, in vivo studies indicated that the combination of AZD8055 and SAHA almost completely inhibited tumor-growth, without obvious adverse effects, by abrogating AKT and upregulating Bim; while either agent alone shows only 30% inhibition in primary HCC xenografts. Conclusions Our findings suggest that a combining-regimen of mTORKi and HDACi may be an effective therapeutic strategy for HCC.</description><subject>AKT</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis Regulatory Proteins - antagonists &amp; inhibitors</subject><subject>Apoptosis Regulatory Proteins - genetics</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Bcl-2-Like Protein 11</subject><subject>Bim</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cell Death - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Drug Synergism</subject><subject>Female</subject><subject>Gastroenterology and Hepatology</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene Knockdown Techniques</subject><subject>HCC</subject><subject>HDAC inhibitor</subject><subject>Histone Deacetylase Inhibitors - administration &amp; dosage</subject><subject>Humans</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medical sciences</subject><subject>Membrane Proteins - antagonists &amp; inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>mTOR kinase inhibitor</subject><subject>Multiprotein Complexes</subject><subject>Proteins - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction - drug effects</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0168-8278</issn><issn>1600-0641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kkuLFDEUhYMoTjv6B1xINuKqanLrlQqIIOVjhIEBHdchlbqZTltVaZNUY_8Pf7ApulVw4SoPvnNIzrmEPAeWA4PmapfvtrjPCwaQM54zKB-QDTSMZayp4CHZJKjN2oK3F-RJCDvGWMlE9ZhcFNCWNVSwIT_fLWqkUfl7jHa-p87Q6e72cwdXXUG1m_Yj_sBAcd6qWafN1oboZqQDKo3xOKqA1M5b29vofDbhYFXEgao52iwuk_MUjbFa6WPC6N7bSfkjve46qldDv94ebPQuSYbT4eCekkdGjQGfnddL8vXD-7vuOru5_fipe3uT6Zo1MTOmLBm0UFVlOSDvGyEaphuu6xb5oLFve2V4X1SNQjR9XfdVVbSqEKJuStPo8pK8Ovnuvfu-YIhyskHjOKoZ3RKkABA1cMETWZxI7V0IHo08f0UCk2sZcifXMuRahmRcpjKS6MXZfulTMn8kv9NPwMszoIJWo_EpEhv-cnUhGAiRuNcnDlMYB4teBm0xxTdYjzrKwdn_v-PNP3I92jmVMn7DI4adW_ycYpYgQyGZ_LKOzTo1AIzVvOblL29_vkw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Shao, Huanjie</creator><creator>Gao, Chun</creator><creator>Tang, Haikuo</creator><creator>Zhang, Hao</creator><creator>Roberts, Lewis R</creator><creator>Hylander, Bonnie L</creator><creator>Repasky, Elizabeth A</creator><creator>Ma, Wen W</creator><creator>Qiu, Jingxin</creator><creator>Adjei, Alex A</creator><creator>Dy, Grace K</creator><creator>Yu, Chunrong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo</title><author>Shao, Huanjie ; Gao, Chun ; Tang, Haikuo ; Zhang, Hao ; Roberts, Lewis R ; Hylander, Bonnie L ; Repasky, Elizabeth A ; Ma, Wen W ; Qiu, Jingxin ; Adjei, Alex A ; Dy, Grace K ; Yu, Chunrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-ff3301814433de7b69960c67c58e7dceb8baf7b246aeefb55b4428a299563f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AKT</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis Regulatory Proteins - antagonists &amp; inhibitors</topic><topic>Apoptosis Regulatory Proteins - genetics</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Bcl-2-Like Protein 11</topic><topic>Bim</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cell Death - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Drug Synergism</topic><topic>Female</topic><topic>Gastroenterology and Hepatology</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene Knockdown Techniques</topic><topic>HCC</topic><topic>HDAC inhibitor</topic><topic>Histone Deacetylase Inhibitors - administration &amp; dosage</topic><topic>Humans</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medical sciences</topic><topic>Membrane Proteins - antagonists &amp; inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>mTOR kinase inhibitor</topic><topic>Multiprotein Complexes</topic><topic>Proteins - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction - drug effects</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Huanjie</creatorcontrib><creatorcontrib>Gao, Chun</creatorcontrib><creatorcontrib>Tang, Haikuo</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Roberts, Lewis R</creatorcontrib><creatorcontrib>Hylander, Bonnie L</creatorcontrib><creatorcontrib>Repasky, Elizabeth A</creatorcontrib><creatorcontrib>Ma, Wen W</creatorcontrib><creatorcontrib>Qiu, Jingxin</creatorcontrib><creatorcontrib>Adjei, Alex A</creatorcontrib><creatorcontrib>Dy, Grace K</creatorcontrib><creatorcontrib>Yu, Chunrong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Huanjie</au><au>Gao, Chun</au><au>Tang, Haikuo</au><au>Zhang, Hao</au><au>Roberts, Lewis R</au><au>Hylander, Bonnie L</au><au>Repasky, Elizabeth A</au><au>Ma, Wen W</au><au>Qiu, Jingxin</au><au>Adjei, Alex A</au><au>Dy, Grace K</au><au>Yu, Chunrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo</atitle><jtitle>Journal of hepatology</jtitle><addtitle>J Hepatol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>56</volume><issue>1</issue><spage>176</spage><epage>183</epage><pages>176-183</pages><issn>0168-8278</issn><eissn>1600-0641</eissn><coden>JOHEEC</coden><abstract>Background &amp; Aims The mammalian target of rapamycin (mTOR) plays a pivotal role in hepatocellular carcinoma (HCC). Previous studies indicated that inhibition of mTORC1 enhanced histone deacetylase inhibitors (HDACis)-mediated anti-tumor activity, accompanied with feedback activation of AKT. Therefore, dual targeting of mTORC1/C2 should be more efficient in suppressing AKT activity and in enhancing the anti-tumor activity of HDACi in HCC. Methods The interactions between mTOR kinase inhibitors (mTORKis) (i.e., Pp242, AZD8055, OSI027) and HDACis (i.e., SAHA, LBH589) were examined in vitro using HCC cell lines and in vivo using patient-derived primary HCC xenografts on SCID mice. Results mTORKis significantly enhanced HDACi-induced apoptosis in HCC cells. The inhibition of both mTORC1/2 not only efficiently blocked mTORC1 signaling, but also abrogated AKT-feedback activation caused by selective mTORC1 inhibition. The co-treatment of mTORKi and HDACi further inhibited AKT signaling and upregulated Bim. Dysfunction of mTORC2 by shRNA significantly lowered the threshold of HDACi-induced cytotoxicity by abrogating AKT activation. Knockdown of AKT1 sensitized Pp242/HDACi-induced apoptosis and ectopic expression of constitutively active AKT1 abrogated the combination-induced cytotoxicity, indicating AKT plays a vital role in the combination-induced effects. Knockdown of Bim prevented Pp242/HDACis-induced cytotoxicity in HCC. Lastly, in vivo studies indicated that the combination of AZD8055 and SAHA almost completely inhibited tumor-growth, without obvious adverse effects, by abrogating AKT and upregulating Bim; while either agent alone shows only 30% inhibition in primary HCC xenografts. Conclusions Our findings suggest that a combining-regimen of mTORKi and HDACi may be an effective therapeutic strategy for HCC.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21835141</pmid><doi>10.1016/j.jhep.2011.07.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-8278
ispartof Journal of hepatology, 2012-01, Vol.56 (1), p.176-183
issn 0168-8278
1600-0641
language eng
recordid cdi_proquest_miscellaneous_911951797
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects AKT
Animals
Apoptosis
Apoptosis Regulatory Proteins - antagonists & inhibitors
Apoptosis Regulatory Proteins - genetics
Apoptosis Regulatory Proteins - metabolism
Base Sequence
Bcl-2-Like Protein 11
Bim
Biological and medical sciences
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - pathology
Cell Death - drug effects
Cell Line, Tumor
Drug Synergism
Female
Gastroenterology and Hepatology
Gastroenterology. Liver. Pancreas. Abdomen
Gene Knockdown Techniques
HCC
HDAC inhibitor
Histone Deacetylase Inhibitors - administration & dosage
Humans
Liver Neoplasms - drug therapy
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Mechanistic Target of Rapamycin Complex 1
Medical sciences
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, SCID
mTOR kinase inhibitor
Multiprotein Complexes
Proteins - antagonists & inhibitors
Proto-Oncogene Proteins - antagonists & inhibitors
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-akt - antagonists & inhibitors
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
RNA, Small Interfering - genetics
Signal Transduction - drug effects
TOR Serine-Threonine Kinases
Transcription Factors - antagonists & inhibitors
Tumors
Xenograft Model Antitumor Assays
title Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20targeting%20of%20mTORC1/C2%20complexes%20enhances%20histone%20deacetylase%20inhibitor-mediated%20anti-tumor%20efficacy%20in%20primary%20HCC%20cancer%20in%20vitro%20and%20in%20vivo&rft.jtitle=Journal%20of%20hepatology&rft.au=Shao,%20Huanjie&rft.date=2012-01-01&rft.volume=56&rft.issue=1&rft.spage=176&rft.epage=183&rft.pages=176-183&rft.issn=0168-8278&rft.eissn=1600-0641&rft.coden=JOHEEC&rft_id=info:doi/10.1016/j.jhep.2011.07.013&rft_dat=%3Cproquest_cross%3E911951797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911951797&rft_id=info:pmid/21835141&rft_els_id=1_s2_0_S0168827811005757&rfr_iscdi=true