Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism

We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2011-12, Vol.115 (50), p.14306-14314
Hauptverfasser: LaRue, Jerry L, Schäfer, Tim, Matsiev, Daniel, Velarde, Luis, Nahler, N. Hendrik, Auerbach, Daniel J, Wodtke, Alec M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14314
container_issue 50
container_start_page 14306
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 115
creator LaRue, Jerry L
Schäfer, Tim
Matsiev, Daniel
Velarde, Luis
Nahler, N. Hendrik
Auerbach, Daniel J
Wodtke, Alec M
description We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.
doi_str_mv 10.1021/jp205868g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911947529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911947529</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1URNuFA3-g8qWiPQQ8_sjG3KpVWhBFIPFxjRxnsutVEm9tB7UXfjuutlQcKk7zauaZV6N5CXkN7C0wDu-2O85UVVbrZ-QIFGeF4qAOsmaVLlQp9CE5jnHLGAPB5QtyyDkAhxKOyO96QJuCn-gnN2FyltYThrXDSPvgR_rTtcEk5yczDHf0a275hB39NofeWKT1rcfRxZiB97T-5Tqccrf3gZp_V-nFnHyHydjNiFOin9FuzOTi-JI8780Q8dVDXZAfl_X31Yfi-svVx9XFdWGEXKZC9F2LpZCqkgzbDkrGe4ZClFYajqoyy0oLtFlq2QFa0WottFSiZdCqPFuQN3vfXfA3M8bU5KstDoOZ0M-x0QBaLhW_J8_-S8JSCcWkhCqj53vUBh9jwL7ZBTeacNcAa-6DaR6DyezJg-3cjtg9kn-TyMDpHjA2Nls_h_y2-ITRH9VClaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753504418</pqid></control><display><type>article</type><title>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>LaRue, Jerry L ; Schäfer, Tim ; Matsiev, Daniel ; Velarde, Luis ; Nahler, N. Hendrik ; Auerbach, Daniel J ; Wodtke, Alec M</creator><creatorcontrib>LaRue, Jerry L ; Schäfer, Tim ; Matsiev, Daniel ; Velarde, Luis ; Nahler, N. Hendrik ; Auerbach, Daniel J ; Wodtke, Alec M</creatorcontrib><description>We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp205868g</identifier><identifier>PMID: 22112161</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Kinetics, Spectroscopy ; Cesium - chemistry ; Chemistry, Physical ; Direct power generation ; Electron energy distribution ; Electronics ; Electrons ; Energy measurement ; Energy Transfer ; Estimates ; Excitation ; Gold - chemistry ; Ions ; Kinetic energy ; Kinetics ; Models, Chemical ; Nitric Oxide - chemistry ; Surface Properties ; Thermodynamics ; Turning ; Vibration</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2011-12, Vol.115 (50), p.14306-14314</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</citedby><cites>FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp205868g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp205868g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22112161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaRue, Jerry L</creatorcontrib><creatorcontrib>Schäfer, Tim</creatorcontrib><creatorcontrib>Matsiev, Daniel</creatorcontrib><creatorcontrib>Velarde, Luis</creatorcontrib><creatorcontrib>Nahler, N. Hendrik</creatorcontrib><creatorcontrib>Auerbach, Daniel J</creatorcontrib><creatorcontrib>Wodtke, Alec M</creatorcontrib><title>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.</description><subject>A: Kinetics, Spectroscopy</subject><subject>Cesium - chemistry</subject><subject>Chemistry, Physical</subject><subject>Direct power generation</subject><subject>Electron energy distribution</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Energy measurement</subject><subject>Energy Transfer</subject><subject>Estimates</subject><subject>Excitation</subject><subject>Gold - chemistry</subject><subject>Ions</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Nitric Oxide - chemistry</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><subject>Turning</subject><subject>Vibration</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi1URNuFA3-g8qWiPQQ8_sjG3KpVWhBFIPFxjRxnsutVEm9tB7UXfjuutlQcKk7zauaZV6N5CXkN7C0wDu-2O85UVVbrZ-QIFGeF4qAOsmaVLlQp9CE5jnHLGAPB5QtyyDkAhxKOyO96QJuCn-gnN2FyltYThrXDSPvgR_rTtcEk5yczDHf0a275hB39NofeWKT1rcfRxZiB97T-5Tqccrf3gZp_V-nFnHyHydjNiFOin9FuzOTi-JI8780Q8dVDXZAfl_X31Yfi-svVx9XFdWGEXKZC9F2LpZCqkgzbDkrGe4ZClFYajqoyy0oLtFlq2QFa0WottFSiZdCqPFuQN3vfXfA3M8bU5KstDoOZ0M-x0QBaLhW_J8_-S8JSCcWkhCqj53vUBh9jwL7ZBTeacNcAa-6DaR6DyezJg-3cjtg9kn-TyMDpHjA2Nls_h_y2-ITRH9VClaY</recordid><startdate>20111222</startdate><enddate>20111222</enddate><creator>LaRue, Jerry L</creator><creator>Schäfer, Tim</creator><creator>Matsiev, Daniel</creator><creator>Velarde, Luis</creator><creator>Nahler, N. Hendrik</creator><creator>Auerbach, Daniel J</creator><creator>Wodtke, Alec M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111222</creationdate><title>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</title><author>LaRue, Jerry L ; Schäfer, Tim ; Matsiev, Daniel ; Velarde, Luis ; Nahler, N. Hendrik ; Auerbach, Daniel J ; Wodtke, Alec M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A: Kinetics, Spectroscopy</topic><topic>Cesium - chemistry</topic><topic>Chemistry, Physical</topic><topic>Direct power generation</topic><topic>Electron energy distribution</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Energy measurement</topic><topic>Energy Transfer</topic><topic>Estimates</topic><topic>Excitation</topic><topic>Gold - chemistry</topic><topic>Ions</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Nitric Oxide - chemistry</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><topic>Turning</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaRue, Jerry L</creatorcontrib><creatorcontrib>Schäfer, Tim</creatorcontrib><creatorcontrib>Matsiev, Daniel</creatorcontrib><creatorcontrib>Velarde, Luis</creatorcontrib><creatorcontrib>Nahler, N. Hendrik</creatorcontrib><creatorcontrib>Auerbach, Daniel J</creatorcontrib><creatorcontrib>Wodtke, Alec M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaRue, Jerry L</au><au>Schäfer, Tim</au><au>Matsiev, Daniel</au><au>Velarde, Luis</au><au>Nahler, N. Hendrik</au><au>Auerbach, Daniel J</au><au>Wodtke, Alec M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2011-12-22</date><risdate>2011</risdate><volume>115</volume><issue>50</issue><spage>14306</spage><epage>14314</epage><pages>14306-14314</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22112161</pmid><doi>10.1021/jp205868g</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2011-12, Vol.115 (50), p.14306-14314
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_911947529
source MEDLINE; American Chemical Society Journals
subjects A: Kinetics, Spectroscopy
Cesium - chemistry
Chemistry, Physical
Direct power generation
Electron energy distribution
Electronics
Electrons
Energy measurement
Energy Transfer
Estimates
Excitation
Gold - chemistry
Ions
Kinetic energy
Kinetics
Models, Chemical
Nitric Oxide - chemistry
Surface Properties
Thermodynamics
Turning
Vibration
title Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Kinetic%20Energies%20from%20Vibrationally%20Promoted%20Surface%20Exoemission:%20Evidence%20for%20a%20Vibrational%20Autodetachment%20Mechanism&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=LaRue,%20Jerry%20L&rft.date=2011-12-22&rft.volume=115&rft.issue=50&rft.spage=14306&rft.epage=14314&rft.pages=14306-14314&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp205868g&rft_dat=%3Cproquest_cross%3E911947529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753504418&rft_id=info:pmid/22112161&rfr_iscdi=true