Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism
We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2011-12, Vol.115 (50), p.14306-14314 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14314 |
---|---|
container_issue | 50 |
container_start_page | 14306 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 115 |
creator | LaRue, Jerry L Schäfer, Tim Matsiev, Daniel Velarde, Luis Nahler, N. Hendrik Auerbach, Daniel J Wodtke, Alec M |
description | We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer. |
doi_str_mv | 10.1021/jp205868g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911947529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911947529</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1URNuFA3-g8qWiPQQ8_sjG3KpVWhBFIPFxjRxnsutVEm9tB7UXfjuutlQcKk7zauaZV6N5CXkN7C0wDu-2O85UVVbrZ-QIFGeF4qAOsmaVLlQp9CE5jnHLGAPB5QtyyDkAhxKOyO96QJuCn-gnN2FyltYThrXDSPvgR_rTtcEk5yczDHf0a275hB39NofeWKT1rcfRxZiB97T-5Tqccrf3gZp_V-nFnHyHydjNiFOin9FuzOTi-JI8780Q8dVDXZAfl_X31Yfi-svVx9XFdWGEXKZC9F2LpZCqkgzbDkrGe4ZClFYajqoyy0oLtFlq2QFa0WottFSiZdCqPFuQN3vfXfA3M8bU5KstDoOZ0M-x0QBaLhW_J8_-S8JSCcWkhCqj53vUBh9jwL7ZBTeacNcAa-6DaR6DyezJg-3cjtg9kn-TyMDpHjA2Nls_h_y2-ITRH9VClaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753504418</pqid></control><display><type>article</type><title>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>LaRue, Jerry L ; Schäfer, Tim ; Matsiev, Daniel ; Velarde, Luis ; Nahler, N. Hendrik ; Auerbach, Daniel J ; Wodtke, Alec M</creator><creatorcontrib>LaRue, Jerry L ; Schäfer, Tim ; Matsiev, Daniel ; Velarde, Luis ; Nahler, N. Hendrik ; Auerbach, Daniel J ; Wodtke, Alec M</creatorcontrib><description>We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp205868g</identifier><identifier>PMID: 22112161</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Kinetics, Spectroscopy ; Cesium - chemistry ; Chemistry, Physical ; Direct power generation ; Electron energy distribution ; Electronics ; Electrons ; Energy measurement ; Energy Transfer ; Estimates ; Excitation ; Gold - chemistry ; Ions ; Kinetic energy ; Kinetics ; Models, Chemical ; Nitric Oxide - chemistry ; Surface Properties ; Thermodynamics ; Turning ; Vibration</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2011-12, Vol.115 (50), p.14306-14314</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</citedby><cites>FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp205868g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp205868g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22112161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaRue, Jerry L</creatorcontrib><creatorcontrib>Schäfer, Tim</creatorcontrib><creatorcontrib>Matsiev, Daniel</creatorcontrib><creatorcontrib>Velarde, Luis</creatorcontrib><creatorcontrib>Nahler, N. Hendrik</creatorcontrib><creatorcontrib>Auerbach, Daniel J</creatorcontrib><creatorcontrib>Wodtke, Alec M</creatorcontrib><title>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.</description><subject>A: Kinetics, Spectroscopy</subject><subject>Cesium - chemistry</subject><subject>Chemistry, Physical</subject><subject>Direct power generation</subject><subject>Electron energy distribution</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Energy measurement</subject><subject>Energy Transfer</subject><subject>Estimates</subject><subject>Excitation</subject><subject>Gold - chemistry</subject><subject>Ions</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Nitric Oxide - chemistry</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><subject>Turning</subject><subject>Vibration</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi1URNuFA3-g8qWiPQQ8_sjG3KpVWhBFIPFxjRxnsutVEm9tB7UXfjuutlQcKk7zauaZV6N5CXkN7C0wDu-2O85UVVbrZ-QIFGeF4qAOsmaVLlQp9CE5jnHLGAPB5QtyyDkAhxKOyO96QJuCn-gnN2FyltYThrXDSPvgR_rTtcEk5yczDHf0a275hB39NofeWKT1rcfRxZiB97T-5Tqccrf3gZp_V-nFnHyHydjNiFOin9FuzOTi-JI8780Q8dVDXZAfl_X31Yfi-svVx9XFdWGEXKZC9F2LpZCqkgzbDkrGe4ZClFYajqoyy0oLtFlq2QFa0WottFSiZdCqPFuQN3vfXfA3M8bU5KstDoOZ0M-x0QBaLhW_J8_-S8JSCcWkhCqj53vUBh9jwL7ZBTeacNcAa-6DaR6DyezJg-3cjtg9kn-TyMDpHjA2Nls_h_y2-ITRH9VClaY</recordid><startdate>20111222</startdate><enddate>20111222</enddate><creator>LaRue, Jerry L</creator><creator>Schäfer, Tim</creator><creator>Matsiev, Daniel</creator><creator>Velarde, Luis</creator><creator>Nahler, N. Hendrik</creator><creator>Auerbach, Daniel J</creator><creator>Wodtke, Alec M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111222</creationdate><title>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</title><author>LaRue, Jerry L ; Schäfer, Tim ; Matsiev, Daniel ; Velarde, Luis ; Nahler, N. Hendrik ; Auerbach, Daniel J ; Wodtke, Alec M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-3fdbe6345840ebd1602f0e336c4a2e58a7893ec2e594d1ec3b9939453b01b5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A: Kinetics, Spectroscopy</topic><topic>Cesium - chemistry</topic><topic>Chemistry, Physical</topic><topic>Direct power generation</topic><topic>Electron energy distribution</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Energy measurement</topic><topic>Energy Transfer</topic><topic>Estimates</topic><topic>Excitation</topic><topic>Gold - chemistry</topic><topic>Ions</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Nitric Oxide - chemistry</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><topic>Turning</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaRue, Jerry L</creatorcontrib><creatorcontrib>Schäfer, Tim</creatorcontrib><creatorcontrib>Matsiev, Daniel</creatorcontrib><creatorcontrib>Velarde, Luis</creatorcontrib><creatorcontrib>Nahler, N. Hendrik</creatorcontrib><creatorcontrib>Auerbach, Daniel J</creatorcontrib><creatorcontrib>Wodtke, Alec M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaRue, Jerry L</au><au>Schäfer, Tim</au><au>Matsiev, Daniel</au><au>Velarde, Luis</au><au>Nahler, N. Hendrik</au><au>Auerbach, Daniel J</au><au>Wodtke, Alec M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2011-12-22</date><risdate>2011</risdate><volume>115</volume><issue>50</issue><spage>14306</spage><epage>14314</epage><pages>14306-14314</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22112161</pmid><doi>10.1021/jp205868g</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2011-12, Vol.115 (50), p.14306-14314 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_911947529 |
source | MEDLINE; American Chemical Society Journals |
subjects | A: Kinetics, Spectroscopy Cesium - chemistry Chemistry, Physical Direct power generation Electron energy distribution Electronics Electrons Energy measurement Energy Transfer Estimates Excitation Gold - chemistry Ions Kinetic energy Kinetics Models, Chemical Nitric Oxide - chemistry Surface Properties Thermodynamics Turning Vibration |
title | Electron Kinetic Energies from Vibrationally Promoted Surface Exoemission: Evidence for a Vibrational Autodetachment Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Kinetic%20Energies%20from%20Vibrationally%20Promoted%20Surface%20Exoemission:%20Evidence%20for%20a%20Vibrational%20Autodetachment%20Mechanism&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=LaRue,%20Jerry%20L&rft.date=2011-12-22&rft.volume=115&rft.issue=50&rft.spage=14306&rft.epage=14314&rft.pages=14306-14314&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp205868g&rft_dat=%3Cproquest_cross%3E911947529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753504418&rft_id=info:pmid/22112161&rfr_iscdi=true |