Optochemical Genetics

Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light inten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2011-12, Vol.50 (51), p.12156-12182
Hauptverfasser: Fehrentz, Timm, Schönberger, Matthias, Trauner, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12182
container_issue 51
container_start_page 12156
container_title Angewandte Chemie International Edition
container_volume 50
creator Fehrentz, Timm
Schönberger, Matthias
Trauner, Dirk
description Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”. Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.
doi_str_mv 10.1002/anie.201103236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911945355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687662523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRbK0e9SiCB72k7uxmZzfHUmoVSuuh2OOSjw2mpknNJmj_e7ekFvFgTzMwv_fgzSPkCmgfKGUPYZGZPqMAlDOOR6QLgoHHpeTHbvc596QS0CFn1i4drxTFU9JhDGgQKL9LLmfruozfzCqLw_xmbApTZ7E9JydpmFtzsZs9Mn8czYdP3mQ2fh4OJl4sfIaewQSFAAQGXCKPU7cnyAIuQ4o0gSCNUhNGUeKnPjMIECUscSeZmCCGiPfIXWu7rsqPxtharzIbmzwPC1M2VgcAgS-4EI68_5cEuX0BVSgPo6gkIhOMO_T2D7osm6pwiTW4KCgoKnRUv6XiqrS2MqleV9kqrDYaqN6WoLcl6H0JTnC9s22ilUn2-M_XHRC0wGeWm80BOz2YPo9-m3utNrO1-dprw-pdu_BS6MV0rOHlldPFcKIV_wZLoJ4X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516650686</pqid></control><display><type>article</type><title>Optochemical Genetics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fehrentz, Timm ; Schönberger, Matthias ; Trauner, Dirk</creator><creatorcontrib>Fehrentz, Timm ; Schönberger, Matthias ; Trauner, Dirk</creatorcontrib><description>Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”. Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201103236</identifier><identifier>PMID: 22109984</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Brain - cytology ; Brain - physiology ; chemical genetics ; Complex systems ; Genetic Techniques ; Genetics ; Humans ; ion channels ; Ligand-Gated Ion Channels - chemistry ; Ligand-Gated Ion Channels - genetics ; Ligand-Gated Ion Channels - physiology ; Models, Molecular ; Neurotransmitters ; Optical control ; optogenetics ; Photochemical Processes ; Photoreceptor Cells - chemistry ; Photoreceptor Cells - physiology ; Photoreceptors ; photoswitches ; Potassium Channels, Voltage-Gated - chemistry ; Potassium Channels, Voltage-Gated - genetics ; Potassium Channels, Voltage-Gated - physiology ; Proteins ; Receptors ; Restoration</subject><ispartof>Angewandte Chemie International Edition, 2011-12, Vol.50 (51), p.12156-12182</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</citedby><cites>FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201103236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201103236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22109984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fehrentz, Timm</creatorcontrib><creatorcontrib>Schönberger, Matthias</creatorcontrib><creatorcontrib>Trauner, Dirk</creatorcontrib><title>Optochemical Genetics</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”. Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.</description><subject>Animals</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>chemical genetics</subject><subject>Complex systems</subject><subject>Genetic Techniques</subject><subject>Genetics</subject><subject>Humans</subject><subject>ion channels</subject><subject>Ligand-Gated Ion Channels - chemistry</subject><subject>Ligand-Gated Ion Channels - genetics</subject><subject>Ligand-Gated Ion Channels - physiology</subject><subject>Models, Molecular</subject><subject>Neurotransmitters</subject><subject>Optical control</subject><subject>optogenetics</subject><subject>Photochemical Processes</subject><subject>Photoreceptor Cells - chemistry</subject><subject>Photoreceptor Cells - physiology</subject><subject>Photoreceptors</subject><subject>photoswitches</subject><subject>Potassium Channels, Voltage-Gated - chemistry</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Potassium Channels, Voltage-Gated - physiology</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Restoration</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1Lw0AQxRdRbK0e9SiCB72k7uxmZzfHUmoVSuuh2OOSjw2mpknNJmj_e7ekFvFgTzMwv_fgzSPkCmgfKGUPYZGZPqMAlDOOR6QLgoHHpeTHbvc596QS0CFn1i4drxTFU9JhDGgQKL9LLmfruozfzCqLw_xmbApTZ7E9JydpmFtzsZs9Mn8czYdP3mQ2fh4OJl4sfIaewQSFAAQGXCKPU7cnyAIuQ4o0gSCNUhNGUeKnPjMIECUscSeZmCCGiPfIXWu7rsqPxtharzIbmzwPC1M2VgcAgS-4EI68_5cEuX0BVSgPo6gkIhOMO_T2D7osm6pwiTW4KCgoKnRUv6XiqrS2MqleV9kqrDYaqN6WoLcl6H0JTnC9s22ilUn2-M_XHRC0wGeWm80BOz2YPo9-m3utNrO1-dprw-pdu_BS6MV0rOHlldPFcKIV_wZLoJ4X</recordid><startdate>20111216</startdate><enddate>20111216</enddate><creator>Fehrentz, Timm</creator><creator>Schönberger, Matthias</creator><creator>Trauner, Dirk</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20111216</creationdate><title>Optochemical Genetics</title><author>Fehrentz, Timm ; Schönberger, Matthias ; Trauner, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>chemical genetics</topic><topic>Complex systems</topic><topic>Genetic Techniques</topic><topic>Genetics</topic><topic>Humans</topic><topic>ion channels</topic><topic>Ligand-Gated Ion Channels - chemistry</topic><topic>Ligand-Gated Ion Channels - genetics</topic><topic>Ligand-Gated Ion Channels - physiology</topic><topic>Models, Molecular</topic><topic>Neurotransmitters</topic><topic>Optical control</topic><topic>optogenetics</topic><topic>Photochemical Processes</topic><topic>Photoreceptor Cells - chemistry</topic><topic>Photoreceptor Cells - physiology</topic><topic>Photoreceptors</topic><topic>photoswitches</topic><topic>Potassium Channels, Voltage-Gated - chemistry</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Potassium Channels, Voltage-Gated - physiology</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Restoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehrentz, Timm</creatorcontrib><creatorcontrib>Schönberger, Matthias</creatorcontrib><creatorcontrib>Trauner, Dirk</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehrentz, Timm</au><au>Schönberger, Matthias</au><au>Trauner, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optochemical Genetics</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2011-12-16</date><risdate>2011</risdate><volume>50</volume><issue>51</issue><spage>12156</spage><epage>12182</epage><pages>12156-12182</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”. Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22109984</pmid><doi>10.1002/anie.201103236</doi><tpages>27</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2011-12, Vol.50 (51), p.12156-12182
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_911945355
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Brain - cytology
Brain - physiology
chemical genetics
Complex systems
Genetic Techniques
Genetics
Humans
ion channels
Ligand-Gated Ion Channels - chemistry
Ligand-Gated Ion Channels - genetics
Ligand-Gated Ion Channels - physiology
Models, Molecular
Neurotransmitters
Optical control
optogenetics
Photochemical Processes
Photoreceptor Cells - chemistry
Photoreceptor Cells - physiology
Photoreceptors
photoswitches
Potassium Channels, Voltage-Gated - chemistry
Potassium Channels, Voltage-Gated - genetics
Potassium Channels, Voltage-Gated - physiology
Proteins
Receptors
Restoration
title Optochemical Genetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optochemical%20Genetics&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fehrentz,%20Timm&rft.date=2011-12-16&rft.volume=50&rft.issue=51&rft.spage=12156&rft.epage=12182&rft.pages=12156-12182&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201103236&rft_dat=%3Cproquest_cross%3E1687662523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516650686&rft_id=info:pmid/22109984&rfr_iscdi=true