Optochemical Genetics
Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light inten...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2011-12, Vol.50 (51), p.12156-12182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12182 |
---|---|
container_issue | 51 |
container_start_page | 12156 |
container_title | Angewandte Chemie International Edition |
container_volume | 50 |
creator | Fehrentz, Timm Schönberger, Matthias Trauner, Dirk |
description | Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”.
Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior. |
doi_str_mv | 10.1002/anie.201103236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911945355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687662523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRbK0e9SiCB72k7uxmZzfHUmoVSuuh2OOSjw2mpknNJmj_e7ekFvFgTzMwv_fgzSPkCmgfKGUPYZGZPqMAlDOOR6QLgoHHpeTHbvc596QS0CFn1i4drxTFU9JhDGgQKL9LLmfruozfzCqLw_xmbApTZ7E9JydpmFtzsZs9Mn8czYdP3mQ2fh4OJl4sfIaewQSFAAQGXCKPU7cnyAIuQ4o0gSCNUhNGUeKnPjMIECUscSeZmCCGiPfIXWu7rsqPxtharzIbmzwPC1M2VgcAgS-4EI68_5cEuX0BVSgPo6gkIhOMO_T2D7osm6pwiTW4KCgoKnRUv6XiqrS2MqleV9kqrDYaqN6WoLcl6H0JTnC9s22ilUn2-M_XHRC0wGeWm80BOz2YPo9-m3utNrO1-dprw-pdu_BS6MV0rOHlldPFcKIV_wZLoJ4X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516650686</pqid></control><display><type>article</type><title>Optochemical Genetics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fehrentz, Timm ; Schönberger, Matthias ; Trauner, Dirk</creator><creatorcontrib>Fehrentz, Timm ; Schönberger, Matthias ; Trauner, Dirk</creatorcontrib><description>Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”.
Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201103236</identifier><identifier>PMID: 22109984</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Brain - cytology ; Brain - physiology ; chemical genetics ; Complex systems ; Genetic Techniques ; Genetics ; Humans ; ion channels ; Ligand-Gated Ion Channels - chemistry ; Ligand-Gated Ion Channels - genetics ; Ligand-Gated Ion Channels - physiology ; Models, Molecular ; Neurotransmitters ; Optical control ; optogenetics ; Photochemical Processes ; Photoreceptor Cells - chemistry ; Photoreceptor Cells - physiology ; Photoreceptors ; photoswitches ; Potassium Channels, Voltage-Gated - chemistry ; Potassium Channels, Voltage-Gated - genetics ; Potassium Channels, Voltage-Gated - physiology ; Proteins ; Receptors ; Restoration</subject><ispartof>Angewandte Chemie International Edition, 2011-12, Vol.50 (51), p.12156-12182</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</citedby><cites>FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201103236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201103236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22109984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fehrentz, Timm</creatorcontrib><creatorcontrib>Schönberger, Matthias</creatorcontrib><creatorcontrib>Trauner, Dirk</creatorcontrib><title>Optochemical Genetics</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”.
Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.</description><subject>Animals</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>chemical genetics</subject><subject>Complex systems</subject><subject>Genetic Techniques</subject><subject>Genetics</subject><subject>Humans</subject><subject>ion channels</subject><subject>Ligand-Gated Ion Channels - chemistry</subject><subject>Ligand-Gated Ion Channels - genetics</subject><subject>Ligand-Gated Ion Channels - physiology</subject><subject>Models, Molecular</subject><subject>Neurotransmitters</subject><subject>Optical control</subject><subject>optogenetics</subject><subject>Photochemical Processes</subject><subject>Photoreceptor Cells - chemistry</subject><subject>Photoreceptor Cells - physiology</subject><subject>Photoreceptors</subject><subject>photoswitches</subject><subject>Potassium Channels, Voltage-Gated - chemistry</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Potassium Channels, Voltage-Gated - physiology</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Restoration</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1Lw0AQxRdRbK0e9SiCB72k7uxmZzfHUmoVSuuh2OOSjw2mpknNJmj_e7ekFvFgTzMwv_fgzSPkCmgfKGUPYZGZPqMAlDOOR6QLgoHHpeTHbvc596QS0CFn1i4drxTFU9JhDGgQKL9LLmfruozfzCqLw_xmbApTZ7E9JydpmFtzsZs9Mn8czYdP3mQ2fh4OJl4sfIaewQSFAAQGXCKPU7cnyAIuQ4o0gSCNUhNGUeKnPjMIECUscSeZmCCGiPfIXWu7rsqPxtharzIbmzwPC1M2VgcAgS-4EI68_5cEuX0BVSgPo6gkIhOMO_T2D7osm6pwiTW4KCgoKnRUv6XiqrS2MqleV9kqrDYaqN6WoLcl6H0JTnC9s22ilUn2-M_XHRC0wGeWm80BOz2YPo9-m3utNrO1-dprw-pdu_BS6MV0rOHlldPFcKIV_wZLoJ4X</recordid><startdate>20111216</startdate><enddate>20111216</enddate><creator>Fehrentz, Timm</creator><creator>Schönberger, Matthias</creator><creator>Trauner, Dirk</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20111216</creationdate><title>Optochemical Genetics</title><author>Fehrentz, Timm ; Schönberger, Matthias ; Trauner, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5426-e6d655161213763cf516d62937a060d19fbfeabbd4f42e611bd2da067de9c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>chemical genetics</topic><topic>Complex systems</topic><topic>Genetic Techniques</topic><topic>Genetics</topic><topic>Humans</topic><topic>ion channels</topic><topic>Ligand-Gated Ion Channels - chemistry</topic><topic>Ligand-Gated Ion Channels - genetics</topic><topic>Ligand-Gated Ion Channels - physiology</topic><topic>Models, Molecular</topic><topic>Neurotransmitters</topic><topic>Optical control</topic><topic>optogenetics</topic><topic>Photochemical Processes</topic><topic>Photoreceptor Cells - chemistry</topic><topic>Photoreceptor Cells - physiology</topic><topic>Photoreceptors</topic><topic>photoswitches</topic><topic>Potassium Channels, Voltage-Gated - chemistry</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Potassium Channels, Voltage-Gated - physiology</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Restoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehrentz, Timm</creatorcontrib><creatorcontrib>Schönberger, Matthias</creatorcontrib><creatorcontrib>Trauner, Dirk</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehrentz, Timm</au><au>Schönberger, Matthias</au><au>Trauner, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optochemical Genetics</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2011-12-16</date><risdate>2011</risdate><volume>50</volume><issue>51</issue><spage>12156</spage><epage>12182</epage><pages>12156-12182</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage‐gated and ligand‐gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it “optochemical genetics”.
Light of my life: The merger of natural transmembrane proteins with synthetic photoswitches creates hybrid receptors that can be integrated into complex systems and regulated with the precision that only light provides. This strategy allows for the optical control of single cells, neural systems, and can even be used to control animal behavior.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22109984</pmid><doi>10.1002/anie.201103236</doi><tpages>27</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2011-12, Vol.50 (51), p.12156-12182 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_911945355 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Brain - cytology Brain - physiology chemical genetics Complex systems Genetic Techniques Genetics Humans ion channels Ligand-Gated Ion Channels - chemistry Ligand-Gated Ion Channels - genetics Ligand-Gated Ion Channels - physiology Models, Molecular Neurotransmitters Optical control optogenetics Photochemical Processes Photoreceptor Cells - chemistry Photoreceptor Cells - physiology Photoreceptors photoswitches Potassium Channels, Voltage-Gated - chemistry Potassium Channels, Voltage-Gated - genetics Potassium Channels, Voltage-Gated - physiology Proteins Receptors Restoration |
title | Optochemical Genetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optochemical%20Genetics&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fehrentz,%20Timm&rft.date=2011-12-16&rft.volume=50&rft.issue=51&rft.spage=12156&rft.epage=12182&rft.pages=12156-12182&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201103236&rft_dat=%3Cproquest_cross%3E1687662523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516650686&rft_id=info:pmid/22109984&rfr_iscdi=true |