Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties
We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT...
Gespeichert in:
Veröffentlicht in: | Nano letters 2011-12, Vol.11 (12), p.5316-5321 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5321 |
---|---|
container_issue | 12 |
container_start_page | 5316 |
container_title | Nano letters |
container_volume | 11 |
creator | Ren, Shenqiang Bernardi, Marco Lunt, Richard R Bulovic, Vladimir Grossman, Jeffrey C Gradečak, Silvija |
description | We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT layer to enhance the charge separation and transport in the device active layer. Electrical characteristics of devices with SWCNT concentrations up to 40 wt % were measured and are shown to be strongly dependent on the SWCNT loading. A maximum open circuit voltage was measured for SWCNT concentration of 3 wt % with a value of 1.04 V, higher than expected based on the interface band alignment. Modeling of the open-circuit voltage suggests that despite the large carrier mobility in SWCNTs device power conversion efficiency is governed by carrier recombination. Optical characterization shows that only SWCNT with diameter of 1.3–1.4 nm can contribute to the photocurrent with internal quantum efficiency up to 26%. Our results advance the fundamental understanding and improve the design of efficient polymer/SWCNTs solar cells. |
doi_str_mv | 10.1021/nl202796u |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911940778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911940778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-667d92bc9ff8e4e6e53bb8117c59beb7c8ecfb3cb884fed0f7c4d26fbd9502fd3</originalsourceid><addsrcrecordid>eNp90UtrGzEQB3BRUprE7SFfIOgSkoLd6LUP5WaMWxecB9Q5L5J2lGxYSxtpt8Xfvgp27UvoSSP4MTP8B6EzSr5Rwui1axlhhcyHD-iEZpxMcinZ0b4uxTE6jfGFECJ5Rj6hY5Y8F6U4QW7l_6hQ47m1jWnA9XimgvYO3ynn-0HD9QNfrPAv36qAZ9C28QZPTd_8BrxUGwj41ofu2bf-aTPG8xZMHxqj2jFWrsb3Xf_2wQ_BdxD6BuJn9NGqNsKX3TtCj9_nq9lisrz_8XM2XU6UELyf5HlRS6aNtLYEATlkXOuS0sJkUoMuTAnGam50WQoLNbGFETXLra5lRpit-Qhdbvt2wb8OEPtq3UST1lcO_BArSakUpCjKJK_-K2mRM5KRlGKiX7fUBB9jAFt1oVmrsKkoqd4OUe0Pkez5ru2g11Dv5b_kE7jYARVTRjYoZ5p4cBmngmXy4JSJ1Ysfgku5vTPwLxEwnMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762050698</pqid></control><display><type>article</type><title>Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties</title><source>ACS Publications</source><creator>Ren, Shenqiang ; Bernardi, Marco ; Lunt, Richard R ; Bulovic, Vladimir ; Grossman, Jeffrey C ; Gradečak, Silvija</creator><creatorcontrib>Ren, Shenqiang ; Bernardi, Marco ; Lunt, Richard R ; Bulovic, Vladimir ; Grossman, Jeffrey C ; Gradečak, Silvija</creatorcontrib><description>We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT layer to enhance the charge separation and transport in the device active layer. Electrical characteristics of devices with SWCNT concentrations up to 40 wt % were measured and are shown to be strongly dependent on the SWCNT loading. A maximum open circuit voltage was measured for SWCNT concentration of 3 wt % with a value of 1.04 V, higher than expected based on the interface band alignment. Modeling of the open-circuit voltage suggests that despite the large carrier mobility in SWCNTs device power conversion efficiency is governed by carrier recombination. Optical characterization shows that only SWCNT with diameter of 1.3–1.4 nm can contribute to the photocurrent with internal quantum efficiency up to 26%. Our results advance the fundamental understanding and improve the design of efficient polymer/SWCNTs solar cells.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl202796u</identifier><identifier>PMID: 22023484</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Charge ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Devices ; Electronics ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotubes ; Open circuit voltage ; Photocurrent ; Photoelectric effect ; Photovoltaic cells ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Single wall carbon nanotubes ; Solar cells ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2011-12, Vol.11 (12), p.5316-5321</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-667d92bc9ff8e4e6e53bb8117c59beb7c8ecfb3cb884fed0f7c4d26fbd9502fd3</citedby><cites>FETCH-LOGICAL-a443t-667d92bc9ff8e4e6e53bb8117c59beb7c8ecfb3cb884fed0f7c4d26fbd9502fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl202796u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl202796u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25314259$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22023484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Shenqiang</creatorcontrib><creatorcontrib>Bernardi, Marco</creatorcontrib><creatorcontrib>Lunt, Richard R</creatorcontrib><creatorcontrib>Bulovic, Vladimir</creatorcontrib><creatorcontrib>Grossman, Jeffrey C</creatorcontrib><creatorcontrib>Gradečak, Silvija</creatorcontrib><title>Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT layer to enhance the charge separation and transport in the device active layer. Electrical characteristics of devices with SWCNT concentrations up to 40 wt % were measured and are shown to be strongly dependent on the SWCNT loading. A maximum open circuit voltage was measured for SWCNT concentration of 3 wt % with a value of 1.04 V, higher than expected based on the interface band alignment. Modeling of the open-circuit voltage suggests that despite the large carrier mobility in SWCNTs device power conversion efficiency is governed by carrier recombination. Optical characterization shows that only SWCNT with diameter of 1.3–1.4 nm can contribute to the photocurrent with internal quantum efficiency up to 26%. Our results advance the fundamental understanding and improve the design of efficient polymer/SWCNTs solar cells.</description><subject>Applied sciences</subject><subject>Charge</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Open circuit voltage</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Single wall carbon nanotubes</subject><subject>Solar cells</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90UtrGzEQB3BRUprE7SFfIOgSkoLd6LUP5WaMWxecB9Q5L5J2lGxYSxtpt8Xfvgp27UvoSSP4MTP8B6EzSr5Rwui1axlhhcyHD-iEZpxMcinZ0b4uxTE6jfGFECJ5Rj6hY5Y8F6U4QW7l_6hQ47m1jWnA9XimgvYO3ynn-0HD9QNfrPAv36qAZ9C28QZPTd_8BrxUGwj41ofu2bf-aTPG8xZMHxqj2jFWrsb3Xf_2wQ_BdxD6BuJn9NGqNsKX3TtCj9_nq9lisrz_8XM2XU6UELyf5HlRS6aNtLYEATlkXOuS0sJkUoMuTAnGam50WQoLNbGFETXLra5lRpit-Qhdbvt2wb8OEPtq3UST1lcO_BArSakUpCjKJK_-K2mRM5KRlGKiX7fUBB9jAFt1oVmrsKkoqd4OUe0Pkez5ru2g11Dv5b_kE7jYARVTRjYoZ5p4cBmngmXy4JSJ1Ysfgku5vTPwLxEwnMA</recordid><startdate>20111214</startdate><enddate>20111214</enddate><creator>Ren, Shenqiang</creator><creator>Bernardi, Marco</creator><creator>Lunt, Richard R</creator><creator>Bulovic, Vladimir</creator><creator>Grossman, Jeffrey C</creator><creator>Gradečak, Silvija</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111214</creationdate><title>Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties</title><author>Ren, Shenqiang ; Bernardi, Marco ; Lunt, Richard R ; Bulovic, Vladimir ; Grossman, Jeffrey C ; Gradečak, Silvija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-667d92bc9ff8e4e6e53bb8117c59beb7c8ecfb3cb884fed0f7c4d26fbd9502fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Charge</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Open circuit voltage</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Single wall carbon nanotubes</topic><topic>Solar cells</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Shenqiang</creatorcontrib><creatorcontrib>Bernardi, Marco</creatorcontrib><creatorcontrib>Lunt, Richard R</creatorcontrib><creatorcontrib>Bulovic, Vladimir</creatorcontrib><creatorcontrib>Grossman, Jeffrey C</creatorcontrib><creatorcontrib>Gradečak, Silvija</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Shenqiang</au><au>Bernardi, Marco</au><au>Lunt, Richard R</au><au>Bulovic, Vladimir</au><au>Grossman, Jeffrey C</au><au>Gradečak, Silvija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-12-14</date><risdate>2011</risdate><volume>11</volume><issue>12</issue><spage>5316</spage><epage>5321</epage><pages>5316-5321</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT layer to enhance the charge separation and transport in the device active layer. Electrical characteristics of devices with SWCNT concentrations up to 40 wt % were measured and are shown to be strongly dependent on the SWCNT loading. A maximum open circuit voltage was measured for SWCNT concentration of 3 wt % with a value of 1.04 V, higher than expected based on the interface band alignment. Modeling of the open-circuit voltage suggests that despite the large carrier mobility in SWCNTs device power conversion efficiency is governed by carrier recombination. Optical characterization shows that only SWCNT with diameter of 1.3–1.4 nm can contribute to the photocurrent with internal quantum efficiency up to 26%. Our results advance the fundamental understanding and improve the design of efficient polymer/SWCNTs solar cells.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22023484</pmid><doi>10.1021/nl202796u</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2011-12, Vol.11 (12), p.5316-5321 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_911940778 |
source | ACS Publications |
subjects | Applied sciences Charge Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Devices Electronics Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Nanotubes Open circuit voltage Photocurrent Photoelectric effect Photovoltaic cells Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Single wall carbon nanotubes Solar cells Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Toward Efficient Carbon Nanotube/P3HT Solar Cells: Active Layer Morphology, Electrical, and Optical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Efficient%20Carbon%20Nanotube/P3HT%20Solar%20Cells:%20Active%20Layer%20Morphology,%20Electrical,%20and%20Optical%20Properties&rft.jtitle=Nano%20letters&rft.au=Ren,%20Shenqiang&rft.date=2011-12-14&rft.volume=11&rft.issue=12&rft.spage=5316&rft.epage=5321&rft.pages=5316-5321&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl202796u&rft_dat=%3Cproquest_cross%3E911940778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762050698&rft_id=info:pmid/22023484&rfr_iscdi=true |