Physiological oxygen level is critical for modeling neuronal metabolism in vitro
In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual t...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2012-02, Vol.90 (2), p.422-434 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 434 |
---|---|
container_issue | 2 |
container_start_page | 422 |
container_title | Journal of neuroscience research |
container_volume | 90 |
creator | Zhu, Jing Aja, Susan Kim, Eun-Kyoung Park, Min Jung Ramamurthy, Santosh Jia, Junling Hu, Xueying Geng, Ping Ronnett, Gabriele V. |
description | In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jnr.22765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911940405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911940405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EgvIY-AMoG2JIuX4mGRHlKQQVFDFajuMUgxMXO4X23xMosDFZuj7fGQ5C-xiGGIAcv7RhSEgm-BoaYCiylHGWraMBUAEpA0y20HaMLwBQFJxuoi1C-hkHOkDj8fMyWu_81GrlEr9YTk2bOPNuXGJjooPtvj9qH5LGV8bZdpq0Zh58218b06nSOxubxLbJu-2C30UbtXLR7P28O-jx_Gxyepne3F1cnZ7cpJqRnKeVyHUNueaaVjinmKmcFKUQpYI60zoHTAEqUVJKjMihqhWvWc0FzoXhZcXoDjpceWfBv81N7GRjozbOqdb4eZQFxgUDBrwnj1akDj7GYGo5C7ZRYSkxyK9-su8nv_v17MGPdV42pvojf4P1wPEK-LDOLP83yevb-19lulrY2JnF30KFVykymnH5dHshR_x-MpqMH-SIfgIVy4mU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911940405</pqid></control><display><type>article</type><title>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Jing ; Aja, Susan ; Kim, Eun-Kyoung ; Park, Min Jung ; Ramamurthy, Santosh ; Jia, Junling ; Hu, Xueying ; Geng, Ping ; Ronnett, Gabriele V.</creator><creatorcontrib>Zhu, Jing ; Aja, Susan ; Kim, Eun-Kyoung ; Park, Min Jung ; Ramamurthy, Santosh ; Jia, Junling ; Hu, Xueying ; Geng, Ping ; Ronnett, Gabriele V.</creatorcontrib><description>In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.22765</identifier><identifier>PMID: 22002503</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>AMPK ; Animals ; Cells, Cultured ; Cerebral Cortex - embryology ; Cerebral Cortex - metabolism ; Cerebral Cortex - physiology ; culture ; Energy Metabolism - physiology ; Female ; metabolism ; Models, Neurological ; neuron ; Neurons - physiology ; oxygen ; Oxygen Consumption - physiology ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism</subject><ispartof>Journal of neuroscience research, 2012-02, Vol.90 (2), p.422-434</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</citedby><cites>FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.22765$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.22765$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Aja, Susan</creatorcontrib><creatorcontrib>Kim, Eun-Kyoung</creatorcontrib><creatorcontrib>Park, Min Jung</creatorcontrib><creatorcontrib>Ramamurthy, Santosh</creatorcontrib><creatorcontrib>Jia, Junling</creatorcontrib><creatorcontrib>Hu, Xueying</creatorcontrib><creatorcontrib>Geng, Ping</creatorcontrib><creatorcontrib>Ronnett, Gabriele V.</creatorcontrib><title>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.</description><subject>AMPK</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - physiology</subject><subject>culture</subject><subject>Energy Metabolism - physiology</subject><subject>Female</subject><subject>metabolism</subject><subject>Models, Neurological</subject><subject>neuron</subject><subject>Neurons - physiology</subject><subject>oxygen</subject><subject>Oxygen Consumption - physiology</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAURi0EgvIY-AMoG2JIuX4mGRHlKQQVFDFajuMUgxMXO4X23xMosDFZuj7fGQ5C-xiGGIAcv7RhSEgm-BoaYCiylHGWraMBUAEpA0y20HaMLwBQFJxuoi1C-hkHOkDj8fMyWu_81GrlEr9YTk2bOPNuXGJjooPtvj9qH5LGV8bZdpq0Zh58218b06nSOxubxLbJu-2C30UbtXLR7P28O-jx_Gxyepne3F1cnZ7cpJqRnKeVyHUNueaaVjinmKmcFKUQpYI60zoHTAEqUVJKjMihqhWvWc0FzoXhZcXoDjpceWfBv81N7GRjozbOqdb4eZQFxgUDBrwnj1akDj7GYGo5C7ZRYSkxyK9-su8nv_v17MGPdV42pvojf4P1wPEK-LDOLP83yevb-19lulrY2JnF30KFVykymnH5dHshR_x-MpqMH-SIfgIVy4mU</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Zhu, Jing</creator><creator>Aja, Susan</creator><creator>Kim, Eun-Kyoung</creator><creator>Park, Min Jung</creator><creator>Ramamurthy, Santosh</creator><creator>Jia, Junling</creator><creator>Hu, Xueying</creator><creator>Geng, Ping</creator><creator>Ronnett, Gabriele V.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</title><author>Zhu, Jing ; Aja, Susan ; Kim, Eun-Kyoung ; Park, Min Jung ; Ramamurthy, Santosh ; Jia, Junling ; Hu, Xueying ; Geng, Ping ; Ronnett, Gabriele V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMPK</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - physiology</topic><topic>culture</topic><topic>Energy Metabolism - physiology</topic><topic>Female</topic><topic>metabolism</topic><topic>Models, Neurological</topic><topic>neuron</topic><topic>Neurons - physiology</topic><topic>oxygen</topic><topic>Oxygen Consumption - physiology</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Aja, Susan</creatorcontrib><creatorcontrib>Kim, Eun-Kyoung</creatorcontrib><creatorcontrib>Park, Min Jung</creatorcontrib><creatorcontrib>Ramamurthy, Santosh</creatorcontrib><creatorcontrib>Jia, Junling</creatorcontrib><creatorcontrib>Hu, Xueying</creatorcontrib><creatorcontrib>Geng, Ping</creatorcontrib><creatorcontrib>Ronnett, Gabriele V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jing</au><au>Aja, Susan</au><au>Kim, Eun-Kyoung</au><au>Park, Min Jung</au><au>Ramamurthy, Santosh</au><au>Jia, Junling</au><au>Hu, Xueying</au><au>Geng, Ping</au><au>Ronnett, Gabriele V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2012-02</date><risdate>2012</risdate><volume>90</volume><issue>2</issue><spage>422</spage><epage>434</epage><pages>422-434</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22002503</pmid><doi>10.1002/jnr.22765</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 2012-02, Vol.90 (2), p.422-434 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_proquest_miscellaneous_911940405 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | AMPK Animals Cells, Cultured Cerebral Cortex - embryology Cerebral Cortex - metabolism Cerebral Cortex - physiology culture Energy Metabolism - physiology Female metabolism Models, Neurological neuron Neurons - physiology oxygen Oxygen Consumption - physiology Pregnancy Rats Rats, Sprague-Dawley Reactive Oxygen Species - metabolism |
title | Physiological oxygen level is critical for modeling neuronal metabolism in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20oxygen%20level%20is%20critical%20for%20modeling%20neuronal%20metabolism%20in%20vitro&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Zhu,%20Jing&rft.date=2012-02&rft.volume=90&rft.issue=2&rft.spage=422&rft.epage=434&rft.pages=422-434&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.22765&rft_dat=%3Cproquest_cross%3E911940405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911940405&rft_id=info:pmid/22002503&rfr_iscdi=true |