Physiological oxygen level is critical for modeling neuronal metabolism in vitro

In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2012-02, Vol.90 (2), p.422-434
Hauptverfasser: Zhu, Jing, Aja, Susan, Kim, Eun-Kyoung, Park, Min Jung, Ramamurthy, Santosh, Jia, Junling, Hu, Xueying, Geng, Ping, Ronnett, Gabriele V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 2
container_start_page 422
container_title Journal of neuroscience research
container_volume 90
creator Zhu, Jing
Aja, Susan
Kim, Eun-Kyoung
Park, Min Jung
Ramamurthy, Santosh
Jia, Junling
Hu, Xueying
Geng, Ping
Ronnett, Gabriele V.
description In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jnr.22765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911940405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911940405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EgvIY-AMoG2JIuX4mGRHlKQQVFDFajuMUgxMXO4X23xMosDFZuj7fGQ5C-xiGGIAcv7RhSEgm-BoaYCiylHGWraMBUAEpA0y20HaMLwBQFJxuoi1C-hkHOkDj8fMyWu_81GrlEr9YTk2bOPNuXGJjooPtvj9qH5LGV8bZdpq0Zh58218b06nSOxubxLbJu-2C30UbtXLR7P28O-jx_Gxyepne3F1cnZ7cpJqRnKeVyHUNueaaVjinmKmcFKUQpYI60zoHTAEqUVJKjMihqhWvWc0FzoXhZcXoDjpceWfBv81N7GRjozbOqdb4eZQFxgUDBrwnj1akDj7GYGo5C7ZRYSkxyK9-su8nv_v17MGPdV42pvojf4P1wPEK-LDOLP83yevb-19lulrY2JnF30KFVykymnH5dHshR_x-MpqMH-SIfgIVy4mU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911940405</pqid></control><display><type>article</type><title>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Jing ; Aja, Susan ; Kim, Eun-Kyoung ; Park, Min Jung ; Ramamurthy, Santosh ; Jia, Junling ; Hu, Xueying ; Geng, Ping ; Ronnett, Gabriele V.</creator><creatorcontrib>Zhu, Jing ; Aja, Susan ; Kim, Eun-Kyoung ; Park, Min Jung ; Ramamurthy, Santosh ; Jia, Junling ; Hu, Xueying ; Geng, Ping ; Ronnett, Gabriele V.</creatorcontrib><description>In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.22765</identifier><identifier>PMID: 22002503</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>AMPK ; Animals ; Cells, Cultured ; Cerebral Cortex - embryology ; Cerebral Cortex - metabolism ; Cerebral Cortex - physiology ; culture ; Energy Metabolism - physiology ; Female ; metabolism ; Models, Neurological ; neuron ; Neurons - physiology ; oxygen ; Oxygen Consumption - physiology ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism</subject><ispartof>Journal of neuroscience research, 2012-02, Vol.90 (2), p.422-434</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</citedby><cites>FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.22765$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.22765$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Aja, Susan</creatorcontrib><creatorcontrib>Kim, Eun-Kyoung</creatorcontrib><creatorcontrib>Park, Min Jung</creatorcontrib><creatorcontrib>Ramamurthy, Santosh</creatorcontrib><creatorcontrib>Jia, Junling</creatorcontrib><creatorcontrib>Hu, Xueying</creatorcontrib><creatorcontrib>Geng, Ping</creatorcontrib><creatorcontrib>Ronnett, Gabriele V.</creatorcontrib><title>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.</description><subject>AMPK</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - physiology</subject><subject>culture</subject><subject>Energy Metabolism - physiology</subject><subject>Female</subject><subject>metabolism</subject><subject>Models, Neurological</subject><subject>neuron</subject><subject>Neurons - physiology</subject><subject>oxygen</subject><subject>Oxygen Consumption - physiology</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAURi0EgvIY-AMoG2JIuX4mGRHlKQQVFDFajuMUgxMXO4X23xMosDFZuj7fGQ5C-xiGGIAcv7RhSEgm-BoaYCiylHGWraMBUAEpA0y20HaMLwBQFJxuoi1C-hkHOkDj8fMyWu_81GrlEr9YTk2bOPNuXGJjooPtvj9qH5LGV8bZdpq0Zh58218b06nSOxubxLbJu-2C30UbtXLR7P28O-jx_Gxyepne3F1cnZ7cpJqRnKeVyHUNueaaVjinmKmcFKUQpYI60zoHTAEqUVJKjMihqhWvWc0FzoXhZcXoDjpceWfBv81N7GRjozbOqdb4eZQFxgUDBrwnj1akDj7GYGo5C7ZRYSkxyK9-su8nv_v17MGPdV42pvojf4P1wPEK-LDOLP83yevb-19lulrY2JnF30KFVykymnH5dHshR_x-MpqMH-SIfgIVy4mU</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Zhu, Jing</creator><creator>Aja, Susan</creator><creator>Kim, Eun-Kyoung</creator><creator>Park, Min Jung</creator><creator>Ramamurthy, Santosh</creator><creator>Jia, Junling</creator><creator>Hu, Xueying</creator><creator>Geng, Ping</creator><creator>Ronnett, Gabriele V.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</title><author>Zhu, Jing ; Aja, Susan ; Kim, Eun-Kyoung ; Park, Min Jung ; Ramamurthy, Santosh ; Jia, Junling ; Hu, Xueying ; Geng, Ping ; Ronnett, Gabriele V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4285-d68cf08c5c3d18314a829b66ba0f7cc801300d6b332e680dfa5f4f56186e5bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMPK</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - physiology</topic><topic>culture</topic><topic>Energy Metabolism - physiology</topic><topic>Female</topic><topic>metabolism</topic><topic>Models, Neurological</topic><topic>neuron</topic><topic>Neurons - physiology</topic><topic>oxygen</topic><topic>Oxygen Consumption - physiology</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Aja, Susan</creatorcontrib><creatorcontrib>Kim, Eun-Kyoung</creatorcontrib><creatorcontrib>Park, Min Jung</creatorcontrib><creatorcontrib>Ramamurthy, Santosh</creatorcontrib><creatorcontrib>Jia, Junling</creatorcontrib><creatorcontrib>Hu, Xueying</creatorcontrib><creatorcontrib>Geng, Ping</creatorcontrib><creatorcontrib>Ronnett, Gabriele V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jing</au><au>Aja, Susan</au><au>Kim, Eun-Kyoung</au><au>Park, Min Jung</au><au>Ramamurthy, Santosh</au><au>Jia, Junling</au><au>Hu, Xueying</au><au>Geng, Ping</au><au>Ronnett, Gabriele V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological oxygen level is critical for modeling neuronal metabolism in vitro</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2012-02</date><risdate>2012</risdate><volume>90</volume><issue>2</issue><spage>422</spage><epage>434</epage><pages>422-434</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate‐activated protein kinase (AMPK) was more activated in 5% O2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22002503</pmid><doi>10.1002/jnr.22765</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2012-02, Vol.90 (2), p.422-434
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_911940405
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects AMPK
Animals
Cells, Cultured
Cerebral Cortex - embryology
Cerebral Cortex - metabolism
Cerebral Cortex - physiology
culture
Energy Metabolism - physiology
Female
metabolism
Models, Neurological
neuron
Neurons - physiology
oxygen
Oxygen Consumption - physiology
Pregnancy
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species - metabolism
title Physiological oxygen level is critical for modeling neuronal metabolism in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20oxygen%20level%20is%20critical%20for%20modeling%20neuronal%20metabolism%20in%20vitro&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Zhu,%20Jing&rft.date=2012-02&rft.volume=90&rft.issue=2&rft.spage=422&rft.epage=434&rft.pages=422-434&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.22765&rft_dat=%3Cproquest_cross%3E911940405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911940405&rft_id=info:pmid/22002503&rfr_iscdi=true