The mass-period distribution of close-in exoplanets

Context. The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P ~ 2.5 days, while higher masses are found down to P ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2011-04, Vol.528, p.A2
Hauptverfasser: Benítez-Llambay, P., Masset, F., Beaugé, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A2
container_title Astronomy and astrophysics (Berlin)
container_volume 528
creator Benítez-Llambay, P.
Masset, F.
Beaugé, C.
description Context. The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P ~ 2.5 days, while higher masses are found down to P ~ 1 day. Aims. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. Methods. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. Results. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P ≳ 2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of \hbox{$Q'_* \simeq 10^7$}Q∗′≃107. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.
doi_str_mv 10.1051/0004-6361/201015774
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911167390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911167390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-a4bb3c842de343123a9469067a5c75579c3a21f6baeb00cfd263c79c68def54e3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIXcMkFcQpdv5MjFAqICjgUOFqO4whDGgc7lcrfk9Aqp9XuzszuDELnGK4wcDwDAJYKKvCMAAbMpWQHaIIZJSlIJg7RZEQco5MYv_qW4IxOEF192mStY0xbG5wvk9LFLrhi0znfJL5KTO2jTV2T2K1va93YLp6io0rX0Z7t6xS9Le5W84d0-XL_OL9epoYJ6FLNioKajJHSUkYxoTpnIgchNTeSc5kbqgmuRKFtAWCqkghq-qnISltxZukUXe502-B_NjZ2au2isfXwhd9ElWOMhaQ59Ei6Q5rgYwy2Um1wax1-FQY1JKQG_2rwr8aEetbFXl9Ho-sq6Ma4OFIJI0D4v3q6w_XR2O241-Fb9eclVxl8qNvnm_fXBTwpSv8AVuFzmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911167390</pqid></control><display><type>article</type><title>The mass-period distribution of close-in exoplanets</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Benítez-Llambay, P. ; Masset, F. ; Beaugé, C.</creator><creatorcontrib>Benítez-Llambay, P. ; Masset, F. ; Beaugé, C.</creatorcontrib><description>Context. The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P ~ 2.5 days, while higher masses are found down to P ~ 1 day. Aims. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. Methods. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. Results. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P ≳ 2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of \hbox{$Q'_* \simeq 10^7$}Q∗′≃107. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201015774</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; planet-disk interactions ; planet-star interactions ; protoplanetary disks</subject><ispartof>Astronomy and astrophysics (Berlin), 2011-04, Vol.528, p.A2</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-a4bb3c842de343123a9469067a5c75579c3a21f6baeb00cfd263c79c68def54e3</citedby><cites>FETCH-LOGICAL-c460t-a4bb3c842de343123a9469067a5c75579c3a21f6baeb00cfd263c79c68def54e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3714,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24202590$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benítez-Llambay, P.</creatorcontrib><creatorcontrib>Masset, F.</creatorcontrib><creatorcontrib>Beaugé, C.</creatorcontrib><title>The mass-period distribution of close-in exoplanets</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P ~ 2.5 days, while higher masses are found down to P ~ 1 day. Aims. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. Methods. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. Results. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P ≳ 2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of \hbox{$Q'_* \simeq 10^7$}Q∗′≃107. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>planet-disk interactions</subject><subject>planet-star interactions</subject><subject>protoplanetary disks</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMIXcMkFcQpdv5MjFAqICjgUOFqO4whDGgc7lcrfk9Aqp9XuzszuDELnGK4wcDwDAJYKKvCMAAbMpWQHaIIZJSlIJg7RZEQco5MYv_qW4IxOEF192mStY0xbG5wvk9LFLrhi0znfJL5KTO2jTV2T2K1va93YLp6io0rX0Z7t6xS9Le5W84d0-XL_OL9epoYJ6FLNioKajJHSUkYxoTpnIgchNTeSc5kbqgmuRKFtAWCqkghq-qnISltxZukUXe502-B_NjZ2au2isfXwhd9ElWOMhaQ59Ei6Q5rgYwy2Um1wax1-FQY1JKQG_2rwr8aEetbFXl9Ho-sq6Ma4OFIJI0D4v3q6w_XR2O241-Fb9eclVxl8qNvnm_fXBTwpSv8AVuFzmA</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Benítez-Llambay, P.</creator><creator>Masset, F.</creator><creator>Beaugé, C.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110401</creationdate><title>The mass-period distribution of close-in exoplanets</title><author>Benítez-Llambay, P. ; Masset, F. ; Beaugé, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-a4bb3c842de343123a9469067a5c75579c3a21f6baeb00cfd263c79c68def54e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>planet-disk interactions</topic><topic>planet-star interactions</topic><topic>protoplanetary disks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benítez-Llambay, P.</creatorcontrib><creatorcontrib>Masset, F.</creatorcontrib><creatorcontrib>Beaugé, C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benítez-Llambay, P.</au><au>Masset, F.</au><au>Beaugé, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mass-period distribution of close-in exoplanets</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>528</volume><spage>A2</spage><pages>A2-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>Context. The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P ~ 2.5 days, while higher masses are found down to P ~ 1 day. Aims. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. Methods. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. Results. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P ≳ 2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of \hbox{$Q'_* \simeq 10^7$}Q∗′≃107. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201015774</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2011-04, Vol.528, p.A2
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_911167390
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
planet-disk interactions
planet-star interactions
protoplanetary disks
title The mass-period distribution of close-in exoplanets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mass-period%20distribution%20of%20close-in%20exoplanets&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Ben%C3%ADtez-Llambay,%20P.&rft.date=2011-04-01&rft.volume=528&rft.spage=A2&rft.pages=A2-&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361/201015774&rft_dat=%3Cproquest_cross%3E911167390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911167390&rft_id=info:pmid/&rfr_iscdi=true