Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil

► A novel, 1kg/h free-fall reactor is designed for bio-oil production. ► We investigated and modeled yields from the biomass fast pyrolysis reactor. ► Response surface methodology was used to identify optimal conditions for bio-oil. ► We examined heater temperature, gas flow rate, biomass particle s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2012-01, Vol.103 (1), p.374-380
Hauptverfasser: Ellens, C.J., Brown, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 1
container_start_page 374
container_title Bioresource technology
container_volume 103
creator Ellens, C.J.
Brown, R.C.
description ► A novel, 1kg/h free-fall reactor is designed for bio-oil production. ► We investigated and modeled yields from the biomass fast pyrolysis reactor. ► Response surface methodology was used to identify optimal conditions for bio-oil. ► We examined heater temperature, gas flow rate, biomass particle size and feed rate. ► Liquid yields greater than 70wt.% were achieved with minimal sweep gas flow. A central composite design of experiments was performed to optimize a free-fall reactor for the production of bio-oil from red oak biomass. The effects of four experimental variables including heater set-point temperature, biomass particle size, sweep gas flow rate and biomass feed rate were studied. Heater set-point temperature ranged from 450 to 650°C, average biomass particle size from 200 to 600μm, sweep gas flow rate from 1 to 5sL/min and biomass feed rate from 1 to 2kg/h. Optimal operating conditions yielding over 70wt.% bio-oil were identified at a heater set-point temperature of 575°C, while feeding red oak biomass sized less than 300μm at 2kg/h into the 0.021m diameter, 1.8m tall reactor. Sweep gas flow rate did not have significant effect on bio-oil yield over the range tested.
doi_str_mv 10.1016/j.biortech.2011.09.087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911164035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411013757</els_id><sourcerecordid>1777097784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e455097d36f1fbb28e57a95b52310feca27e2b73bf2e9a5bdc075abe886d2a783</originalsourceid><addsrcrecordid>eNqF0U-PEyEYBnBiNG5d_QqbuRi9zPgCAww3zcZ_ySbrQc8EmJcszbRUoCb100vTVm_ugXD5vfDkfQi5oTBQoPLdenAx5Yr-YWBA6QB6gEk9ISs6Kd4zreRTsgItoZ8EG6_Ii1LWAMCpYs_JFWPApabjiny739W4ib9tjWnbpdDZLmTEPthl6TJaX1PuQjv1AbtdTvPeX2SwpXa7Q07LocTStTx9istL8qzNFnx1vq_Jj08fv99-6e_uP3-9_XDX-1Gy2uMoBGg1cxlocI5NKJTVwgnGKQT0lilkTnEXGGor3OxBCetwmuTMrJr4NXlzereF-rnHUs0mFo_LYreY9sVoSqkcgYvHJQgtOWdjk2__K6lSqoVW05HKE_U5lZIxmF2OG5sPhoI5NmTW5tKQOTZkQJvWUBu8Of-xdxuc_45dKmng9RnY4u0Sst36WP45wQRIAc29PzlsW_4VMZviI249zjGjr2ZO8bEsfwBcP7IX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777097784</pqid></control><display><type>article</type><title>Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ellens, C.J. ; Brown, R.C.</creator><creatorcontrib>Ellens, C.J. ; Brown, R.C.</creatorcontrib><description>► A novel, 1kg/h free-fall reactor is designed for bio-oil production. ► We investigated and modeled yields from the biomass fast pyrolysis reactor. ► Response surface methodology was used to identify optimal conditions for bio-oil. ► We examined heater temperature, gas flow rate, biomass particle size and feed rate. ► Liquid yields greater than 70wt.% were achieved with minimal sweep gas flow. A central composite design of experiments was performed to optimize a free-fall reactor for the production of bio-oil from red oak biomass. The effects of four experimental variables including heater set-point temperature, biomass particle size, sweep gas flow rate and biomass feed rate were studied. Heater set-point temperature ranged from 450 to 650°C, average biomass particle size from 200 to 600μm, sweep gas flow rate from 1 to 5sL/min and biomass feed rate from 1 to 2kg/h. Optimal operating conditions yielding over 70wt.% bio-oil were identified at a heater set-point temperature of 575°C, while feeding red oak biomass sized less than 300μm at 2kg/h into the 0.021m diameter, 1.8m tall reactor. Sweep gas flow rate did not have significant effect on bio-oil yield over the range tested.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.09.087</identifier><identifier>PMID: 22036914</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bio-oil ; Biological and medical sciences ; Biomass ; Bioreactors ; Biotechnology - instrumentation ; Biotechnology - methods ; Fast pyrolysis ; Feed rate ; Free-fall reactor ; Fundamental and applied biological sciences. Psychology ; Gas flow ; Gases ; Heaters ; Heating equipment ; Models, Chemical ; Optimization ; Particle Size ; Plant Oils - metabolism ; Quercus - chemistry ; Reactors ; Rheology ; Temperature</subject><ispartof>Bioresource technology, 2012-01, Vol.103 (1), p.374-380</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e455097d36f1fbb28e57a95b52310feca27e2b73bf2e9a5bdc075abe886d2a783</citedby><cites>FETCH-LOGICAL-c462t-e455097d36f1fbb28e57a95b52310feca27e2b73bf2e9a5bdc075abe886d2a783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.09.087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,4028,27932,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25250650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22036914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellens, C.J.</creatorcontrib><creatorcontrib>Brown, R.C.</creatorcontrib><title>Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► A novel, 1kg/h free-fall reactor is designed for bio-oil production. ► We investigated and modeled yields from the biomass fast pyrolysis reactor. ► Response surface methodology was used to identify optimal conditions for bio-oil. ► We examined heater temperature, gas flow rate, biomass particle size and feed rate. ► Liquid yields greater than 70wt.% were achieved with minimal sweep gas flow. A central composite design of experiments was performed to optimize a free-fall reactor for the production of bio-oil from red oak biomass. The effects of four experimental variables including heater set-point temperature, biomass particle size, sweep gas flow rate and biomass feed rate were studied. Heater set-point temperature ranged from 450 to 650°C, average biomass particle size from 200 to 600μm, sweep gas flow rate from 1 to 5sL/min and biomass feed rate from 1 to 2kg/h. Optimal operating conditions yielding over 70wt.% bio-oil were identified at a heater set-point temperature of 575°C, while feeding red oak biomass sized less than 300μm at 2kg/h into the 0.021m diameter, 1.8m tall reactor. Sweep gas flow rate did not have significant effect on bio-oil yield over the range tested.</description><subject>Bio-oil</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Biotechnology - instrumentation</subject><subject>Biotechnology - methods</subject><subject>Fast pyrolysis</subject><subject>Feed rate</subject><subject>Free-fall reactor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Heaters</subject><subject>Heating equipment</subject><subject>Models, Chemical</subject><subject>Optimization</subject><subject>Particle Size</subject><subject>Plant Oils - metabolism</subject><subject>Quercus - chemistry</subject><subject>Reactors</subject><subject>Rheology</subject><subject>Temperature</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U-PEyEYBnBiNG5d_QqbuRi9zPgCAww3zcZ_ySbrQc8EmJcszbRUoCb100vTVm_ugXD5vfDkfQi5oTBQoPLdenAx5Yr-YWBA6QB6gEk9ISs6Kd4zreRTsgItoZ8EG6_Ii1LWAMCpYs_JFWPApabjiny739W4ib9tjWnbpdDZLmTEPthl6TJaX1PuQjv1AbtdTvPeX2SwpXa7Q07LocTStTx9istL8qzNFnx1vq_Jj08fv99-6e_uP3-9_XDX-1Gy2uMoBGg1cxlocI5NKJTVwgnGKQT0lilkTnEXGGor3OxBCetwmuTMrJr4NXlzereF-rnHUs0mFo_LYreY9sVoSqkcgYvHJQgtOWdjk2__K6lSqoVW05HKE_U5lZIxmF2OG5sPhoI5NmTW5tKQOTZkQJvWUBu8Of-xdxuc_45dKmng9RnY4u0Sst36WP45wQRIAc29PzlsW_4VMZviI249zjGjr2ZO8bEsfwBcP7IX</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ellens, C.J.</creator><creator>Brown, R.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201201</creationdate><title>Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil</title><author>Ellens, C.J. ; Brown, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e455097d36f1fbb28e57a95b52310feca27e2b73bf2e9a5bdc075abe886d2a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bio-oil</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Biotechnology - instrumentation</topic><topic>Biotechnology - methods</topic><topic>Fast pyrolysis</topic><topic>Feed rate</topic><topic>Free-fall reactor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Heaters</topic><topic>Heating equipment</topic><topic>Models, Chemical</topic><topic>Optimization</topic><topic>Particle Size</topic><topic>Plant Oils - metabolism</topic><topic>Quercus - chemistry</topic><topic>Reactors</topic><topic>Rheology</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellens, C.J.</creatorcontrib><creatorcontrib>Brown, R.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellens, C.J.</au><au>Brown, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>103</volume><issue>1</issue><spage>374</spage><epage>380</epage><pages>374-380</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► A novel, 1kg/h free-fall reactor is designed for bio-oil production. ► We investigated and modeled yields from the biomass fast pyrolysis reactor. ► Response surface methodology was used to identify optimal conditions for bio-oil. ► We examined heater temperature, gas flow rate, biomass particle size and feed rate. ► Liquid yields greater than 70wt.% were achieved with minimal sweep gas flow. A central composite design of experiments was performed to optimize a free-fall reactor for the production of bio-oil from red oak biomass. The effects of four experimental variables including heater set-point temperature, biomass particle size, sweep gas flow rate and biomass feed rate were studied. Heater set-point temperature ranged from 450 to 650°C, average biomass particle size from 200 to 600μm, sweep gas flow rate from 1 to 5sL/min and biomass feed rate from 1 to 2kg/h. Optimal operating conditions yielding over 70wt.% bio-oil were identified at a heater set-point temperature of 575°C, while feeding red oak biomass sized less than 300μm at 2kg/h into the 0.021m diameter, 1.8m tall reactor. Sweep gas flow rate did not have significant effect on bio-oil yield over the range tested.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22036914</pmid><doi>10.1016/j.biortech.2011.09.087</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2012-01, Vol.103 (1), p.374-380
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_911164035
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bio-oil
Biological and medical sciences
Biomass
Bioreactors
Biotechnology - instrumentation
Biotechnology - methods
Fast pyrolysis
Feed rate
Free-fall reactor
Fundamental and applied biological sciences. Psychology
Gas flow
Gases
Heaters
Heating equipment
Models, Chemical
Optimization
Particle Size
Plant Oils - metabolism
Quercus - chemistry
Reactors
Rheology
Temperature
title Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T03%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20free-fall%20reactor%20for%20the%20production%20of%20fast%20pyrolysis%20bio-oil&rft.jtitle=Bioresource%20technology&rft.au=Ellens,%20C.J.&rft.date=2012-01&rft.volume=103&rft.issue=1&rft.spage=374&rft.epage=380&rft.pages=374-380&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.09.087&rft_dat=%3Cproquest_cross%3E1777097784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777097784&rft_id=info:pmid/22036914&rft_els_id=S0960852411013757&rfr_iscdi=true