Mapping surface mineralogy using imaging spectrometry

Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or “HSI”, extraction of key spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomorphology (Amsterdam) 2012-01, Vol.137 (1), p.41-56
1. Verfasser: Kruse, Fred A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 41
container_title Geomorphology (Amsterdam)
container_volume 137
creator Kruse, Fred A.
description Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or “HSI”, extraction of key spectral signatures from these data allows direct identification of iron minerals such as hematite, goethite, and jarosite in the visible/near infrared (VNIR); clays, carbonates, micas, sulfates, and other minerals in the short wave infrared (SWIR); and silicates and carbonates in the long wave infrared (LWIR). The unique capability of imaging spectrometry to produce detailed maps of the spatial distribution of specific minerals, mineral assemblages, and mineral variability on the surface of Earth makes it an ideal tool for enhanced geomorphic mapping. Case histories illustrate the use of HSI for characterizing and mapping active and relict geothermal/hydrothermal systems and determining relations between mineralogy and derived landforms. Imaging spectrometry, used in conjunction with complimentary datasets such as InSAR (Interferometric Synthetic Aperture Radar), Light Detection and Ranging (LiDAR), or stereo (photogrammetric-derived) digital elevation models (DEMs), provides a unique means of visualizing the spatial distribution and association of mineralogy with topography, thus contributing to the understanding of the relations between geology and landscape and to improved interpretation of surface geologic processes.
doi_str_mv 10.1016/j.geomorph.2010.09.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911158396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169555X11001516</els_id><sourcerecordid>911158396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-23445aa60436a2898e0ca8e28199b9695e1e6cef7526e0c2fa60743d30a7b493</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EpS4tr1D2guCS7diOnfgGqkpBKuJAkXqzpt5J8CqJg72LtG_f2W7hCCdLM9-M__mEuJCwkiDt5WbVUxpTnn-uFHAR3Aq0eiEWsm1UZZ25fykWDLrKGHN_Kl6VsgGAunGwEOYrznOc-mXZ5Q4DLcc4UcYh9fvlrhwaccT-CZgpbHMaaZv35-Kkw6HQ6-f3TNx9ur67-lzdfrv5cvXxtsLa1NtK6bo2iBZqbVG1riUI2JJqpXMPjpORJBuoa4yy3FIdo02t1xqweaidPhPvjmvnnH7tqGz9GEugYcCJ0q54J6U0rXaWyff_JGVjldScp2XUHtGQUymZOj9nvjHvvQR_EOo3_o9QfxDqwXkWyoNvn__AEnDoMk4hlr_TymjtOApzb45ch8ljn5n58Z0XGQAFDprDXR-OBLG735GyLyHSFGgdM0v26xT_F-YRF72XtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762132348</pqid></control><display><type>article</type><title>Mapping surface mineralogy using imaging spectrometry</title><source>Elsevier ScienceDirect Journals</source><creator>Kruse, Fred A.</creator><creatorcontrib>Kruse, Fred A.</creatorcontrib><description>Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or “HSI”, extraction of key spectral signatures from these data allows direct identification of iron minerals such as hematite, goethite, and jarosite in the visible/near infrared (VNIR); clays, carbonates, micas, sulfates, and other minerals in the short wave infrared (SWIR); and silicates and carbonates in the long wave infrared (LWIR). The unique capability of imaging spectrometry to produce detailed maps of the spatial distribution of specific minerals, mineral assemblages, and mineral variability on the surface of Earth makes it an ideal tool for enhanced geomorphic mapping. Case histories illustrate the use of HSI for characterizing and mapping active and relict geothermal/hydrothermal systems and determining relations between mineralogy and derived landforms. Imaging spectrometry, used in conjunction with complimentary datasets such as InSAR (Interferometric Synthetic Aperture Radar), Light Detection and Ranging (LiDAR), or stereo (photogrammetric-derived) digital elevation models (DEMs), provides a unique means of visualizing the spatial distribution and association of mineralogy with topography, thus contributing to the understanding of the relations between geology and landscape and to improved interpretation of surface geologic processes.</description><identifier>ISSN: 0169-555X</identifier><identifier>EISSN: 1872-695X</identifier><identifier>DOI: 10.1016/j.geomorph.2010.09.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3-D geologic visualization ; Applied geophysics ; carbonates ; case studies ; data collection ; digital elevation models ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geology ; Geomorphology, landform evolution ; goethite ; hematite ; hyperspectral imagery ; Hyperspectral imagery (HSI) ; image analysis ; Imaging ; Imaging spectrometry ; Infrared ; Internal geophysics ; jarosite ; landforms ; landscapes ; lidar ; Mapping ; Marine and continental quaternary ; Mineralogy ; Minerals ; reflectance ; Remote sensing geomorphology ; silicates ; Spectral mineral mapping ; Spectrometry ; Spectroscopy ; sulfates ; Surficial geology ; synthetic aperture radar ; topography</subject><ispartof>Geomorphology (Amsterdam), 2012-01, Vol.137 (1), p.41-56</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-23445aa60436a2898e0ca8e28199b9695e1e6cef7526e0c2fa60743d30a7b493</citedby><cites>FETCH-LOGICAL-a454t-23445aa60436a2898e0ca8e28199b9695e1e6cef7526e0c2fa60743d30a7b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169555X11001516$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25339963$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruse, Fred A.</creatorcontrib><title>Mapping surface mineralogy using imaging spectrometry</title><title>Geomorphology (Amsterdam)</title><description>Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or “HSI”, extraction of key spectral signatures from these data allows direct identification of iron minerals such as hematite, goethite, and jarosite in the visible/near infrared (VNIR); clays, carbonates, micas, sulfates, and other minerals in the short wave infrared (SWIR); and silicates and carbonates in the long wave infrared (LWIR). The unique capability of imaging spectrometry to produce detailed maps of the spatial distribution of specific minerals, mineral assemblages, and mineral variability on the surface of Earth makes it an ideal tool for enhanced geomorphic mapping. Case histories illustrate the use of HSI for characterizing and mapping active and relict geothermal/hydrothermal systems and determining relations between mineralogy and derived landforms. Imaging spectrometry, used in conjunction with complimentary datasets such as InSAR (Interferometric Synthetic Aperture Radar), Light Detection and Ranging (LiDAR), or stereo (photogrammetric-derived) digital elevation models (DEMs), provides a unique means of visualizing the spatial distribution and association of mineralogy with topography, thus contributing to the understanding of the relations between geology and landscape and to improved interpretation of surface geologic processes.</description><subject>3-D geologic visualization</subject><subject>Applied geophysics</subject><subject>carbonates</subject><subject>case studies</subject><subject>data collection</subject><subject>digital elevation models</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Geomorphology, landform evolution</subject><subject>goethite</subject><subject>hematite</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imagery (HSI)</subject><subject>image analysis</subject><subject>Imaging</subject><subject>Imaging spectrometry</subject><subject>Infrared</subject><subject>Internal geophysics</subject><subject>jarosite</subject><subject>landforms</subject><subject>landscapes</subject><subject>lidar</subject><subject>Mapping</subject><subject>Marine and continental quaternary</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>reflectance</subject><subject>Remote sensing geomorphology</subject><subject>silicates</subject><subject>Spectral mineral mapping</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>sulfates</subject><subject>Surficial geology</subject><subject>synthetic aperture radar</subject><subject>topography</subject><issn>0169-555X</issn><issn>1872-695X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EpS4tr1D2guCS7diOnfgGqkpBKuJAkXqzpt5J8CqJg72LtG_f2W7hCCdLM9-M__mEuJCwkiDt5WbVUxpTnn-uFHAR3Aq0eiEWsm1UZZ25fykWDLrKGHN_Kl6VsgGAunGwEOYrznOc-mXZ5Q4DLcc4UcYh9fvlrhwaccT-CZgpbHMaaZv35-Kkw6HQ6-f3TNx9ur67-lzdfrv5cvXxtsLa1NtK6bo2iBZqbVG1riUI2JJqpXMPjpORJBuoa4yy3FIdo02t1xqweaidPhPvjmvnnH7tqGz9GEugYcCJ0q54J6U0rXaWyff_JGVjldScp2XUHtGQUymZOj9nvjHvvQR_EOo3_o9QfxDqwXkWyoNvn__AEnDoMk4hlr_TymjtOApzb45ch8ljn5n58Z0XGQAFDprDXR-OBLG735GyLyHSFGgdM0v26xT_F-YRF72XtQ</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Kruse, Fred A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20120115</creationdate><title>Mapping surface mineralogy using imaging spectrometry</title><author>Kruse, Fred A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-23445aa60436a2898e0ca8e28199b9695e1e6cef7526e0c2fa60743d30a7b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D geologic visualization</topic><topic>Applied geophysics</topic><topic>carbonates</topic><topic>case studies</topic><topic>data collection</topic><topic>digital elevation models</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Geomorphology, landform evolution</topic><topic>goethite</topic><topic>hematite</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imagery (HSI)</topic><topic>image analysis</topic><topic>Imaging</topic><topic>Imaging spectrometry</topic><topic>Infrared</topic><topic>Internal geophysics</topic><topic>jarosite</topic><topic>landforms</topic><topic>landscapes</topic><topic>lidar</topic><topic>Mapping</topic><topic>Marine and continental quaternary</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>reflectance</topic><topic>Remote sensing geomorphology</topic><topic>silicates</topic><topic>Spectral mineral mapping</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>sulfates</topic><topic>Surficial geology</topic><topic>synthetic aperture radar</topic><topic>topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Fred A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geomorphology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Fred A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping surface mineralogy using imaging spectrometry</atitle><jtitle>Geomorphology (Amsterdam)</jtitle><date>2012-01-15</date><risdate>2012</risdate><volume>137</volume><issue>1</issue><spage>41</spage><epage>56</epage><pages>41-56</pages><issn>0169-555X</issn><eissn>1872-695X</eissn><abstract>Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or “HSI”, extraction of key spectral signatures from these data allows direct identification of iron minerals such as hematite, goethite, and jarosite in the visible/near infrared (VNIR); clays, carbonates, micas, sulfates, and other minerals in the short wave infrared (SWIR); and silicates and carbonates in the long wave infrared (LWIR). The unique capability of imaging spectrometry to produce detailed maps of the spatial distribution of specific minerals, mineral assemblages, and mineral variability on the surface of Earth makes it an ideal tool for enhanced geomorphic mapping. Case histories illustrate the use of HSI for characterizing and mapping active and relict geothermal/hydrothermal systems and determining relations between mineralogy and derived landforms. Imaging spectrometry, used in conjunction with complimentary datasets such as InSAR (Interferometric Synthetic Aperture Radar), Light Detection and Ranging (LiDAR), or stereo (photogrammetric-derived) digital elevation models (DEMs), provides a unique means of visualizing the spatial distribution and association of mineralogy with topography, thus contributing to the understanding of the relations between geology and landscape and to improved interpretation of surface geologic processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.geomorph.2010.09.032</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-555X
ispartof Geomorphology (Amsterdam), 2012-01, Vol.137 (1), p.41-56
issn 0169-555X
1872-695X
language eng
recordid cdi_proquest_miscellaneous_911158396
source Elsevier ScienceDirect Journals
subjects 3-D geologic visualization
Applied geophysics
carbonates
case studies
data collection
digital elevation models
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geology
Geomorphology, landform evolution
goethite
hematite
hyperspectral imagery
Hyperspectral imagery (HSI)
image analysis
Imaging
Imaging spectrometry
Infrared
Internal geophysics
jarosite
landforms
landscapes
lidar
Mapping
Marine and continental quaternary
Mineralogy
Minerals
reflectance
Remote sensing geomorphology
silicates
Spectral mineral mapping
Spectrometry
Spectroscopy
sulfates
Surficial geology
synthetic aperture radar
topography
title Mapping surface mineralogy using imaging spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20surface%20mineralogy%20using%20imaging%20spectrometry&rft.jtitle=Geomorphology%20(Amsterdam)&rft.au=Kruse,%20Fred%20A.&rft.date=2012-01-15&rft.volume=137&rft.issue=1&rft.spage=41&rft.epage=56&rft.pages=41-56&rft.issn=0169-555X&rft.eissn=1872-695X&rft_id=info:doi/10.1016/j.geomorph.2010.09.032&rft_dat=%3Cproquest_cross%3E911158396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762132348&rft_id=info:pmid/&rft_els_id=S0169555X11001516&rfr_iscdi=true