Brain distribution of ribavirin after intranasal administration

Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood–brain barrier. Since the nose-to-brain pathway has been indicated for deliverin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antiviral research 2011-12, Vol.92 (3), p.408-414
Hauptverfasser: Colombo, Gaia, Lorenzini, Luca, Zironi, Elisa, Galligioni, Viola, Sonvico, Fabio, Balducci, Anna Giulia, Pagliuca, Giampiero, Giuliani, Alessandro, Calzà, Laura, Scagliarini, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 3
container_start_page 408
container_title Antiviral research
container_volume 92
creator Colombo, Gaia
Lorenzini, Luca
Zironi, Elisa
Galligioni, Viola
Sonvico, Fabio
Balducci, Anna Giulia
Pagliuca, Giampiero
Giuliani, Alessandro
Calzà, Laura
Scagliarini, Alessandra
description Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood–brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4h across the mucosa, after reaching steady-state flux in less than 30min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10mg/kg). Animals were sacrificed at 10, 20 or 30min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC–MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10mg/kg). It was found that 20min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.
doi_str_mv 10.1016/j.antiviral.2011.09.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911154218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166354211004505</els_id><sourcerecordid>905678744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-7ec285e883ba8cc8b256cd6a3e20716ce30bb27dd95349d2b7c44890daf80973</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EomX5BcgFcUoYO4mXE4KKTULiwt2a2I7kKk2KnVbi73HUAseeZqR5sz1CrikUFCi_WxbYj37rA3YFA0oLUAVQdkTmVAqWK1D8mMwTyfOyrtiMnMW4BAAulDwlM8YAaMnYnNw_BvR9Zn0cg282ox_6bGizlGOanirYji5kvh8D9hixy9CufD_hOMEX5KTFLrrLfTwnn89Pn4vX_P3j5W3x8J6bmpVjLpxhsnZSlg1KY2TDam4sx9IxEJQbV0LTMGGtqstKWdYIU1VSgcVWghLlObndjV2H4Wvj4qhXPhrXddi7YRO1opSmP6k8TELNhRRVlUixI00YYgyu1evgVxi-NQU9WdZL_WdZT5Y1KJ0sp86r_Y5Ns3L2r-9XawJu9gBGg12b3Bkf_7lKKC7Y9NbDjnNJ3da7oKPxrjfO-uDMqO3gDx7zA5Fmn2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905678744</pqid></control><display><type>article</type><title>Brain distribution of ribavirin after intranasal administration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Colombo, Gaia ; Lorenzini, Luca ; Zironi, Elisa ; Galligioni, Viola ; Sonvico, Fabio ; Balducci, Anna Giulia ; Pagliuca, Giampiero ; Giuliani, Alessandro ; Calzà, Laura ; Scagliarini, Alessandra</creator><creatorcontrib>Colombo, Gaia ; Lorenzini, Luca ; Zironi, Elisa ; Galligioni, Viola ; Sonvico, Fabio ; Balducci, Anna Giulia ; Pagliuca, Giampiero ; Giuliani, Alessandro ; Calzà, Laura ; Scagliarini, Alessandra</creatorcontrib><description>Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood–brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4h across the mucosa, after reaching steady-state flux in less than 30min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10mg/kg). Animals were sacrificed at 10, 20 or 30min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC–MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10mg/kg). It was found that 20min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.</description><identifier>ISSN: 0166-3542</identifier><identifier>EISSN: 1872-9096</identifier><identifier>DOI: 10.1016/j.antiviral.2011.09.012</identifier><identifier>PMID: 22001322</identifier><identifier>CODEN: ARSRDR</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Administration, Intranasal ; Animals ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Antiviral agents ; Antiviral Agents - administration &amp; dosage ; Antiviral Agents - pharmacokinetics ; Basal ganglia ; Biological and medical sciences ; Blood brain barrier ; Brain ; Brain - drug effects ; Brain - metabolism ; Central nervous system ; Cerebellum ; Cerebrospinal fluid ; Cortex ; Diffusion ; Drug delivery ; Encephalitis ; Epithelium ; General pharmacology ; Hippocampus ; Injections, Intravenous ; Intranasal administration ; Intravenous administration ; Male ; Medical sciences ; Mucosa ; Nasal delivery ; Nasal Mucosa - drug effects ; Nasal Mucosa - metabolism ; Nose-to-brain pathway ; Olfactory bulb ; Permeability ; Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions ; Pharmacology. Drug treatments ; Powder ; Rabbits ; Rats ; Rats, Sprague-Dawley ; Ribavirin ; Ribavirin - administration &amp; dosage ; Ribavirin - pharmacokinetics ; RNA viruses ; Spectrometry</subject><ispartof>Antiviral research, 2011-12, Vol.92 (3), p.408-414</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-7ec285e883ba8cc8b256cd6a3e20716ce30bb27dd95349d2b7c44890daf80973</citedby><cites>FETCH-LOGICAL-c523t-7ec285e883ba8cc8b256cd6a3e20716ce30bb27dd95349d2b7c44890daf80973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.antiviral.2011.09.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24796727$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22001322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colombo, Gaia</creatorcontrib><creatorcontrib>Lorenzini, Luca</creatorcontrib><creatorcontrib>Zironi, Elisa</creatorcontrib><creatorcontrib>Galligioni, Viola</creatorcontrib><creatorcontrib>Sonvico, Fabio</creatorcontrib><creatorcontrib>Balducci, Anna Giulia</creatorcontrib><creatorcontrib>Pagliuca, Giampiero</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Calzà, Laura</creatorcontrib><creatorcontrib>Scagliarini, Alessandra</creatorcontrib><title>Brain distribution of ribavirin after intranasal administration</title><title>Antiviral research</title><addtitle>Antiviral Res</addtitle><description>Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood–brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4h across the mucosa, after reaching steady-state flux in less than 30min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10mg/kg). Animals were sacrificed at 10, 20 or 30min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC–MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10mg/kg). It was found that 20min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.</description><subject>Administration, Intranasal</subject><subject>Animals</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - administration &amp; dosage</subject><subject>Antiviral Agents - pharmacokinetics</subject><subject>Basal ganglia</subject><subject>Biological and medical sciences</subject><subject>Blood brain barrier</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Cerebrospinal fluid</subject><subject>Cortex</subject><subject>Diffusion</subject><subject>Drug delivery</subject><subject>Encephalitis</subject><subject>Epithelium</subject><subject>General pharmacology</subject><subject>Hippocampus</subject><subject>Injections, Intravenous</subject><subject>Intranasal administration</subject><subject>Intravenous administration</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mucosa</subject><subject>Nasal delivery</subject><subject>Nasal Mucosa - drug effects</subject><subject>Nasal Mucosa - metabolism</subject><subject>Nose-to-brain pathway</subject><subject>Olfactory bulb</subject><subject>Permeability</subject><subject>Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions</subject><subject>Pharmacology. Drug treatments</subject><subject>Powder</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Ribavirin</subject><subject>Ribavirin - administration &amp; dosage</subject><subject>Ribavirin - pharmacokinetics</subject><subject>RNA viruses</subject><subject>Spectrometry</subject><issn>0166-3542</issn><issn>1872-9096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlOwzAQQC0EomX5BcgFcUoYO4mXE4KKTULiwt2a2I7kKk2KnVbi73HUAseeZqR5sz1CrikUFCi_WxbYj37rA3YFA0oLUAVQdkTmVAqWK1D8mMwTyfOyrtiMnMW4BAAulDwlM8YAaMnYnNw_BvR9Zn0cg282ox_6bGizlGOanirYji5kvh8D9hixy9CufD_hOMEX5KTFLrrLfTwnn89Pn4vX_P3j5W3x8J6bmpVjLpxhsnZSlg1KY2TDam4sx9IxEJQbV0LTMGGtqstKWdYIU1VSgcVWghLlObndjV2H4Wvj4qhXPhrXddi7YRO1opSmP6k8TELNhRRVlUixI00YYgyu1evgVxi-NQU9WdZL_WdZT5Y1KJ0sp86r_Y5Ns3L2r-9XawJu9gBGg12b3Bkf_7lKKC7Y9NbDjnNJ3da7oKPxrjfO-uDMqO3gDx7zA5Fmn2o</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Colombo, Gaia</creator><creator>Lorenzini, Luca</creator><creator>Zironi, Elisa</creator><creator>Galligioni, Viola</creator><creator>Sonvico, Fabio</creator><creator>Balducci, Anna Giulia</creator><creator>Pagliuca, Giampiero</creator><creator>Giuliani, Alessandro</creator><creator>Calzà, Laura</creator><creator>Scagliarini, Alessandra</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>20111201</creationdate><title>Brain distribution of ribavirin after intranasal administration</title><author>Colombo, Gaia ; Lorenzini, Luca ; Zironi, Elisa ; Galligioni, Viola ; Sonvico, Fabio ; Balducci, Anna Giulia ; Pagliuca, Giampiero ; Giuliani, Alessandro ; Calzà, Laura ; Scagliarini, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-7ec285e883ba8cc8b256cd6a3e20716ce30bb27dd95349d2b7c44890daf80973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Administration, Intranasal</topic><topic>Animals</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - administration &amp; dosage</topic><topic>Antiviral Agents - pharmacokinetics</topic><topic>Basal ganglia</topic><topic>Biological and medical sciences</topic><topic>Blood brain barrier</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Cerebrospinal fluid</topic><topic>Cortex</topic><topic>Diffusion</topic><topic>Drug delivery</topic><topic>Encephalitis</topic><topic>Epithelium</topic><topic>General pharmacology</topic><topic>Hippocampus</topic><topic>Injections, Intravenous</topic><topic>Intranasal administration</topic><topic>Intravenous administration</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mucosa</topic><topic>Nasal delivery</topic><topic>Nasal Mucosa - drug effects</topic><topic>Nasal Mucosa - metabolism</topic><topic>Nose-to-brain pathway</topic><topic>Olfactory bulb</topic><topic>Permeability</topic><topic>Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions</topic><topic>Pharmacology. Drug treatments</topic><topic>Powder</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Ribavirin</topic><topic>Ribavirin - administration &amp; dosage</topic><topic>Ribavirin - pharmacokinetics</topic><topic>RNA viruses</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombo, Gaia</creatorcontrib><creatorcontrib>Lorenzini, Luca</creatorcontrib><creatorcontrib>Zironi, Elisa</creatorcontrib><creatorcontrib>Galligioni, Viola</creatorcontrib><creatorcontrib>Sonvico, Fabio</creatorcontrib><creatorcontrib>Balducci, Anna Giulia</creatorcontrib><creatorcontrib>Pagliuca, Giampiero</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Calzà, Laura</creatorcontrib><creatorcontrib>Scagliarini, Alessandra</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Antiviral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombo, Gaia</au><au>Lorenzini, Luca</au><au>Zironi, Elisa</au><au>Galligioni, Viola</au><au>Sonvico, Fabio</au><au>Balducci, Anna Giulia</au><au>Pagliuca, Giampiero</au><au>Giuliani, Alessandro</au><au>Calzà, Laura</au><au>Scagliarini, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain distribution of ribavirin after intranasal administration</atitle><jtitle>Antiviral research</jtitle><addtitle>Antiviral Res</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>92</volume><issue>3</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>0166-3542</issn><eissn>1872-9096</eissn><coden>ARSRDR</coden><abstract>Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood–brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4h across the mucosa, after reaching steady-state flux in less than 30min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10mg/kg). Animals were sacrificed at 10, 20 or 30min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC–MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10mg/kg). It was found that 20min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>22001322</pmid><doi>10.1016/j.antiviral.2011.09.012</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-3542
ispartof Antiviral research, 2011-12, Vol.92 (3), p.408-414
issn 0166-3542
1872-9096
language eng
recordid cdi_proquest_miscellaneous_911154218
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Administration, Intranasal
Animals
Antibiotics. Antiinfectious agents. Antiparasitic agents
Antiviral agents
Antiviral Agents - administration & dosage
Antiviral Agents - pharmacokinetics
Basal ganglia
Biological and medical sciences
Blood brain barrier
Brain
Brain - drug effects
Brain - metabolism
Central nervous system
Cerebellum
Cerebrospinal fluid
Cortex
Diffusion
Drug delivery
Encephalitis
Epithelium
General pharmacology
Hippocampus
Injections, Intravenous
Intranasal administration
Intravenous administration
Male
Medical sciences
Mucosa
Nasal delivery
Nasal Mucosa - drug effects
Nasal Mucosa - metabolism
Nose-to-brain pathway
Olfactory bulb
Permeability
Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions
Pharmacology. Drug treatments
Powder
Rabbits
Rats
Rats, Sprague-Dawley
Ribavirin
Ribavirin - administration & dosage
Ribavirin - pharmacokinetics
RNA viruses
Spectrometry
title Brain distribution of ribavirin after intranasal administration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20distribution%20of%20ribavirin%20after%20intranasal%20administration&rft.jtitle=Antiviral%20research&rft.au=Colombo,%20Gaia&rft.date=2011-12-01&rft.volume=92&rft.issue=3&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=0166-3542&rft.eissn=1872-9096&rft.coden=ARSRDR&rft_id=info:doi/10.1016/j.antiviral.2011.09.012&rft_dat=%3Cproquest_cross%3E905678744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905678744&rft_id=info:pmid/22001322&rft_els_id=S0166354211004505&rfr_iscdi=true