Self-regulated star formation in galaxies via momentum input from massive stars

Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM) and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2011-10, Vol.417 (2), p.950-973
Hauptverfasser: Hopkins, Philip F., Quataert, Eliot, Murray, Norman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue 2
container_start_page 950
container_title Monthly notices of the Royal Astronomical Society
container_volume 417
creator Hopkins, Philip F.
Quataert, Eliot
Murray, Norman
description Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM) and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to ≲100 K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant 'molecular' clouds (GMCs), dense clumps and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of Small Magellanic Cloud (SMC)-like dwarfs, the Milky Way and z∼ 2 clumpy disc analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt-Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1-2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.
doi_str_mv 10.1111/j.1365-2966.2011.19306.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_911153555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2011.19306.x</oup_id><sourcerecordid>2477178761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5526-4b28ff54d3ab8c0bb06c181b810699e94e2154e565b5bfb538e1787b225bb3683</originalsourceid><addsrcrecordid>eNp1kVlLxDAUhYMoOC7_IQjiU2uWJk1fBBl0VFxwQ98uSU0lY5cxaXX897YzMg-KeUngnO_ccA9CmJKY9udwGlMuRcQyKWNGKI1pxomM52totBLW0YgQLiKVUrqJtkKYEkISzuQI3dzbsoi8fe1K3doXHFrtcdH4SreuqbGr8asu9dzZgD-cxlVT2brtql6YdS0ufFPhSofgPuwCDTtoo9BlsLs_9zZ6PD15GJ9FlzeT8_HxZZQLwWSUGKaKQiQvXBuVE2OIzKmiRlEis8xmiWVUJFZIYYQpjODK0lSlhjFhDJeKb6ODZe7MN--dDS1ULuS2LHVtmy5A1u9GcCFE79z75Zw2na_7z4HKZCKZTNLetP9j0iHXZeF1nbsAM-8q7b-AJVKlhAxjj5a-T1far5VOCQxlwBSGncOwcxjKgEUZMIer67vFsw_gy4Cmm_2DR3_wnoqWlAutna847d9ApjwV8HQ9geeLu1t1NX4Gxb8Bi_-dLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896462647</pqid></control><display><type>article</type><title>Self-regulated star formation in galaxies via momentum input from massive stars</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hopkins, Philip F. ; Quataert, Eliot ; Murray, Norman</creator><creatorcontrib>Hopkins, Philip F. ; Quataert, Eliot ; Murray, Norman</creatorcontrib><description>Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM) and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to ≲100 K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant 'molecular' clouds (GMCs), dense clumps and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of Small Magellanic Cloud (SMC)-like dwarfs, the Milky Way and z∼ 2 clumpy disc analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt-Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1-2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2011.19306.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Astronomy ; cosmology: theory ; Earth, ocean, space ; Exact sciences and technology ; galaxies: evolution ; galaxies: formation ; Giant stars ; Star &amp; galaxy formation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2011-10, Vol.417 (2), p.950-973</ispartof><rights>2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011</rights><rights>2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5526-4b28ff54d3ab8c0bb06c181b810699e94e2154e565b5bfb538e1787b225bb3683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2011.19306.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2011.19306.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24687008$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hopkins, Philip F.</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Murray, Norman</creatorcontrib><title>Self-regulated star formation in galaxies via momentum input from massive stars</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM) and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to ≲100 K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant 'molecular' clouds (GMCs), dense clumps and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of Small Magellanic Cloud (SMC)-like dwarfs, the Milky Way and z∼ 2 clumpy disc analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt-Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1-2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.</description><subject>Astronomy</subject><subject>cosmology: theory</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>galaxies: evolution</subject><subject>galaxies: formation</subject><subject>Giant stars</subject><subject>Star &amp; galaxy formation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kVlLxDAUhYMoOC7_IQjiU2uWJk1fBBl0VFxwQ98uSU0lY5cxaXX897YzMg-KeUngnO_ccA9CmJKY9udwGlMuRcQyKWNGKI1pxomM52totBLW0YgQLiKVUrqJtkKYEkISzuQI3dzbsoi8fe1K3doXHFrtcdH4SreuqbGr8asu9dzZgD-cxlVT2brtql6YdS0ufFPhSofgPuwCDTtoo9BlsLs_9zZ6PD15GJ9FlzeT8_HxZZQLwWSUGKaKQiQvXBuVE2OIzKmiRlEis8xmiWVUJFZIYYQpjODK0lSlhjFhDJeKb6ODZe7MN--dDS1ULuS2LHVtmy5A1u9GcCFE79z75Zw2na_7z4HKZCKZTNLetP9j0iHXZeF1nbsAM-8q7b-AJVKlhAxjj5a-T1far5VOCQxlwBSGncOwcxjKgEUZMIer67vFsw_gy4Cmm_2DR3_wnoqWlAutna847d9ApjwV8HQ9geeLu1t1NX4Gxb8Bi_-dLw</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Hopkins, Philip F.</creator><creator>Quataert, Eliot</creator><creator>Murray, Norman</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201110</creationdate><title>Self-regulated star formation in galaxies via momentum input from massive stars</title><author>Hopkins, Philip F. ; Quataert, Eliot ; Murray, Norman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5526-4b28ff54d3ab8c0bb06c181b810699e94e2154e565b5bfb538e1787b225bb3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>cosmology: theory</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>galaxies: evolution</topic><topic>galaxies: formation</topic><topic>Giant stars</topic><topic>Star &amp; galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopkins, Philip F.</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Murray, Norman</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopkins, Philip F.</au><au>Quataert, Eliot</au><au>Murray, Norman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-regulated star formation in galaxies via momentum input from massive stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2011-10</date><risdate>2011</risdate><volume>417</volume><issue>2</issue><spage>950</spage><epage>973</epage><pages>950-973</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM) and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to ≲100 K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant 'molecular' clouds (GMCs), dense clumps and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of Small Magellanic Cloud (SMC)-like dwarfs, the Milky Way and z∼ 2 clumpy disc analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt-Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1-2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2011.19306.x</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2011-10, Vol.417 (2), p.950-973
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_911153555
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete
subjects Astronomy
cosmology: theory
Earth, ocean, space
Exact sciences and technology
galaxies: evolution
galaxies: formation
Giant stars
Star & galaxy formation
title Self-regulated star formation in galaxies via momentum input from massive stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-regulated%20star%20formation%20in%20galaxies%20via%20momentum%20input%20from%20massive%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Hopkins,%20Philip%20F.&rft.date=2011-10&rft.volume=417&rft.issue=2&rft.spage=950&rft.epage=973&rft.pages=950-973&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2011.19306.x&rft_dat=%3Cproquest_pasca%3E2477178761%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896462647&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2011.19306.x&rfr_iscdi=true