Hemocompatibility of a hydrodynamic levitation centrifugal blood pump

A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of artificial organs 2007-06, Vol.10 (2), p.71-76
Hauptverfasser: Yamane, Takashi, Maruyama, Osamu, Nishida, Masahiro, Kosaka, Ryo, Sugiyama, Daisuke, Miyamoto, Yusuke, Kawamura, Hiroshi, Kato, Takahisa, Sano, Takeshi, Okubo, Takeshi, Sankai, Yoshiyuki, Shigeta, Osamu, Tsutsui, Tatsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 2
container_start_page 71
container_title Journal of artificial organs
container_volume 10
creator Yamane, Takashi
Maruyama, Osamu
Nishida, Masahiro
Kosaka, Ryo
Sugiyama, Daisuke
Miyamoto, Yusuke
Kawamura, Hiroshi
Kato, Takahisa
Sano, Takeshi
Okubo, Takeshi
Sankai, Yoshiyuki
Shigeta, Osamu
Tsutsui, Tatsuo
description A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.
doi_str_mv 10.1007/s10047-006-0370-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910656661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793404831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8ce821cea602eaf8111bf0114d6d3fc210f7b5282aec311b8de8a864100b59493</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMo7rr6A7xIQdBTdSZJ0-Yoy_oBC170HNI01S5tU5tW6P56s-yC4MHLzMA8M8w7LyGXCHcIkN77EHkaA4gYWArx9ojMUaCMQQI_DjVnPE4plTNy5v0GANMkhVMy22WeQDYnq2fbOOOaTg9VXtXVMEWujHT0ORW9K6ZWN5WJavtdDQFwbWRsO_RVOX7oOspr54qoG5vunJyUuvb24pAX5P1x9bZ8jtevTy_Lh3VsOJdDnBmbUTRWC6BWlxki5iUg8kIUrDQUoUzzhGZUW8NCLytspjPBg8w8kVyyBbnd7-169zVaP6im8sbWtW6tG72SCCIRQmAgb_4lUxBUUEwCeP0H3Lixb4MKFc5jHCSTOwr3lOmd970tVddXje4nhaB2Xqi9Fyp4oXZeqG2YuTpsHvPGFr8Th-ezHxKkhB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113409395</pqid></control><display><type>article</type><title>Hemocompatibility of a hydrodynamic levitation centrifugal blood pump</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yamane, Takashi ; Maruyama, Osamu ; Nishida, Masahiro ; Kosaka, Ryo ; Sugiyama, Daisuke ; Miyamoto, Yusuke ; Kawamura, Hiroshi ; Kato, Takahisa ; Sano, Takeshi ; Okubo, Takeshi ; Sankai, Yoshiyuki ; Shigeta, Osamu ; Tsutsui, Tatsuo</creator><creatorcontrib>Yamane, Takashi ; Maruyama, Osamu ; Nishida, Masahiro ; Kosaka, Ryo ; Sugiyama, Daisuke ; Miyamoto, Yusuke ; Kawamura, Hiroshi ; Kato, Takahisa ; Sano, Takeshi ; Okubo, Takeshi ; Sankai, Yoshiyuki ; Shigeta, Osamu ; Tsutsui, Tatsuo</creatorcontrib><description>A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.</description><identifier>ISSN: 1434-7229</identifier><identifier>EISSN: 1619-0904</identifier><identifier>DOI: 10.1007/s10047-006-0370-z</identifier><identifier>PMID: 17574508</identifier><language>eng</language><publisher>Japan: Springer Nature B.V</publisher><subject>Animals ; Blood clots ; Heart, Artificial ; Hemolysis - physiology ; Hemorheology - instrumentation ; Materials Testing ; Pressure distribution ; Prosthesis Design ; Pumps ; Sheep ; Thrombosis - physiopathology</subject><ispartof>Journal of artificial organs, 2007-06, Vol.10 (2), p.71-76</ispartof><rights>The Japanese Society for Artificial Organs 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8ce821cea602eaf8111bf0114d6d3fc210f7b5282aec311b8de8a864100b59493</citedby><cites>FETCH-LOGICAL-c449t-8ce821cea602eaf8111bf0114d6d3fc210f7b5282aec311b8de8a864100b59493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17574508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamane, Takashi</creatorcontrib><creatorcontrib>Maruyama, Osamu</creatorcontrib><creatorcontrib>Nishida, Masahiro</creatorcontrib><creatorcontrib>Kosaka, Ryo</creatorcontrib><creatorcontrib>Sugiyama, Daisuke</creatorcontrib><creatorcontrib>Miyamoto, Yusuke</creatorcontrib><creatorcontrib>Kawamura, Hiroshi</creatorcontrib><creatorcontrib>Kato, Takahisa</creatorcontrib><creatorcontrib>Sano, Takeshi</creatorcontrib><creatorcontrib>Okubo, Takeshi</creatorcontrib><creatorcontrib>Sankai, Yoshiyuki</creatorcontrib><creatorcontrib>Shigeta, Osamu</creatorcontrib><creatorcontrib>Tsutsui, Tatsuo</creatorcontrib><title>Hemocompatibility of a hydrodynamic levitation centrifugal blood pump</title><title>Journal of artificial organs</title><addtitle>J Artif Organs</addtitle><description>A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.</description><subject>Animals</subject><subject>Blood clots</subject><subject>Heart, Artificial</subject><subject>Hemolysis - physiology</subject><subject>Hemorheology - instrumentation</subject><subject>Materials Testing</subject><subject>Pressure distribution</subject><subject>Prosthesis Design</subject><subject>Pumps</subject><subject>Sheep</subject><subject>Thrombosis - physiopathology</subject><issn>1434-7229</issn><issn>1619-0904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMo7rr6A7xIQdBTdSZJ0-Yoy_oBC170HNI01S5tU5tW6P56s-yC4MHLzMA8M8w7LyGXCHcIkN77EHkaA4gYWArx9ojMUaCMQQI_DjVnPE4plTNy5v0GANMkhVMy22WeQDYnq2fbOOOaTg9VXtXVMEWujHT0ORW9K6ZWN5WJavtdDQFwbWRsO_RVOX7oOspr54qoG5vunJyUuvb24pAX5P1x9bZ8jtevTy_Lh3VsOJdDnBmbUTRWC6BWlxki5iUg8kIUrDQUoUzzhGZUW8NCLytspjPBg8w8kVyyBbnd7-169zVaP6im8sbWtW6tG72SCCIRQmAgb_4lUxBUUEwCeP0H3Lixb4MKFc5jHCSTOwr3lOmd970tVddXje4nhaB2Xqi9Fyp4oXZeqG2YuTpsHvPGFr8Th-ezHxKkhB0</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Yamane, Takashi</creator><creator>Maruyama, Osamu</creator><creator>Nishida, Masahiro</creator><creator>Kosaka, Ryo</creator><creator>Sugiyama, Daisuke</creator><creator>Miyamoto, Yusuke</creator><creator>Kawamura, Hiroshi</creator><creator>Kato, Takahisa</creator><creator>Sano, Takeshi</creator><creator>Okubo, Takeshi</creator><creator>Sankai, Yoshiyuki</creator><creator>Shigeta, Osamu</creator><creator>Tsutsui, Tatsuo</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>200706</creationdate><title>Hemocompatibility of a hydrodynamic levitation centrifugal blood pump</title><author>Yamane, Takashi ; Maruyama, Osamu ; Nishida, Masahiro ; Kosaka, Ryo ; Sugiyama, Daisuke ; Miyamoto, Yusuke ; Kawamura, Hiroshi ; Kato, Takahisa ; Sano, Takeshi ; Okubo, Takeshi ; Sankai, Yoshiyuki ; Shigeta, Osamu ; Tsutsui, Tatsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8ce821cea602eaf8111bf0114d6d3fc210f7b5282aec311b8de8a864100b59493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Blood clots</topic><topic>Heart, Artificial</topic><topic>Hemolysis - physiology</topic><topic>Hemorheology - instrumentation</topic><topic>Materials Testing</topic><topic>Pressure distribution</topic><topic>Prosthesis Design</topic><topic>Pumps</topic><topic>Sheep</topic><topic>Thrombosis - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamane, Takashi</creatorcontrib><creatorcontrib>Maruyama, Osamu</creatorcontrib><creatorcontrib>Nishida, Masahiro</creatorcontrib><creatorcontrib>Kosaka, Ryo</creatorcontrib><creatorcontrib>Sugiyama, Daisuke</creatorcontrib><creatorcontrib>Miyamoto, Yusuke</creatorcontrib><creatorcontrib>Kawamura, Hiroshi</creatorcontrib><creatorcontrib>Kato, Takahisa</creatorcontrib><creatorcontrib>Sano, Takeshi</creatorcontrib><creatorcontrib>Okubo, Takeshi</creatorcontrib><creatorcontrib>Sankai, Yoshiyuki</creatorcontrib><creatorcontrib>Shigeta, Osamu</creatorcontrib><creatorcontrib>Tsutsui, Tatsuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamane, Takashi</au><au>Maruyama, Osamu</au><au>Nishida, Masahiro</au><au>Kosaka, Ryo</au><au>Sugiyama, Daisuke</au><au>Miyamoto, Yusuke</au><au>Kawamura, Hiroshi</au><au>Kato, Takahisa</au><au>Sano, Takeshi</au><au>Okubo, Takeshi</au><au>Sankai, Yoshiyuki</au><au>Shigeta, Osamu</au><au>Tsutsui, Tatsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemocompatibility of a hydrodynamic levitation centrifugal blood pump</atitle><jtitle>Journal of artificial organs</jtitle><addtitle>J Artif Organs</addtitle><date>2007-06</date><risdate>2007</risdate><volume>10</volume><issue>2</issue><spage>71</spage><epage>76</epage><pages>71-76</pages><issn>1434-7229</issn><eissn>1619-0904</eissn><abstract>A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.</abstract><cop>Japan</cop><pub>Springer Nature B.V</pub><pmid>17574508</pmid><doi>10.1007/s10047-006-0370-z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-7229
ispartof Journal of artificial organs, 2007-06, Vol.10 (2), p.71-76
issn 1434-7229
1619-0904
language eng
recordid cdi_proquest_miscellaneous_910656661
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Blood clots
Heart, Artificial
Hemolysis - physiology
Hemorheology - instrumentation
Materials Testing
Pressure distribution
Prosthesis Design
Pumps
Sheep
Thrombosis - physiopathology
title Hemocompatibility of a hydrodynamic levitation centrifugal blood pump
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemocompatibility%20of%20a%20hydrodynamic%20levitation%20centrifugal%20blood%20pump&rft.jtitle=Journal%20of%20artificial%20organs&rft.au=Yamane,%20Takashi&rft.date=2007-06&rft.volume=10&rft.issue=2&rft.spage=71&rft.epage=76&rft.pages=71-76&rft.issn=1434-7229&rft.eissn=1619-0904&rft_id=info:doi/10.1007/s10047-006-0370-z&rft_dat=%3Cproquest_cross%3E2793404831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113409395&rft_id=info:pmid/17574508&rfr_iscdi=true