Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag
We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snai...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-08, Vol.45 (15), p.6600-6607 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6607 |
---|---|
container_issue | 15 |
container_start_page | 6600 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Croteau, Marie-Noële Misra, Superb K Luoma, Samuel N Valsami-Jones, Eugenia |
description | We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks. |
doi_str_mv | 10.1021/es200880c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910655850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899167258</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-ee69e15cd0ea4f828b48b94b514373dc1c9dba8e562afa19e430d13e231e398f3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUAFALgejQsuAHkIWEEItQPzP2cuhzpAoWgMQuunFuwFViT-0EaL8eDx1aBAtWlq3j-yTkGWdvOBP8ELNgzBjmHpAF14JV2mj-kCwY47Kysv68R57kfMkYE5KZx2RP8LpeWr1ckJsPfviGib71EZybx3mAycdAj68DjN5l6gMFepowf_0OU4HrUPiEbSo3Cv32aXU1Y5wzhdDRY48TpGt68mMT81y-0SnSdxBi9jfY_SLrGLyjqy8H5FEPQ8anu3OffDo9-Xh0Xl28P1sfrS4qUFJPFWJtkWvXMQTVG2FaZVqrWs2VXMrOcWe7FgzqWkAP3KKSrOMSheQorenlPnl1G3eTYqk0T83os8NhgLAtu7Gc1bpMjP1XGmt5vRTaFPniL3kZ5xRKG40xiiujBS_o9S1yKeacsG82yY9lOg1nzXZxzd3iin2-Czi3I3Z38vemCni5A5AdDH2C4Hy-d0qWxOYPBy7fF_Vvwp9Hb6xo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884148521</pqid></control><display><type>article</type><title>Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag</title><source>American Chemical Society (ACS)</source><source>MEDLINE</source><creator>Croteau, Marie-Noële ; Misra, Superb K ; Luoma, Samuel N ; Valsami-Jones, Eugenia</creator><creatorcontrib>Croteau, Marie-Noële ; Misra, Superb K ; Luoma, Samuel N ; Valsami-Jones, Eugenia</creatorcontrib><description>We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es200880c</identifier><identifier>PMID: 21667957</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; Autoecology ; Bacillariophyceae ; Bioaccumulation ; Biological and medical sciences ; Diatoms - ultrastructure ; Diet ; Ecotoxicology and Human Environmental Health ; Ecotoxicology, biological effects of pollution ; Environmental Exposure - analysis ; Environmental Monitoring ; Food ; Fresh Water ; Fresh water ecosystems ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gastropoda ; General aspects ; Invertebrata ; Ions ; Lymnaea - metabolism ; Lymnaea stagnalis ; Metal Nanoparticles - chemistry ; Mollusks ; Nanoparticles ; Particle Size ; Plankton ; Risk assessment ; Silver ; Silver - metabolism ; Solutions ; Synecology ; Time Factors ; Toxicity</subject><ispartof>Environmental science & technology, 2011-08, Vol.45 (15), p.6600-6607</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-ee69e15cd0ea4f828b48b94b514373dc1c9dba8e562afa19e430d13e231e398f3</citedby><cites>FETCH-LOGICAL-a435t-ee69e15cd0ea4f828b48b94b514373dc1c9dba8e562afa19e430d13e231e398f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es200880c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es200880c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24388487$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21667957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Croteau, Marie-Noële</creatorcontrib><creatorcontrib>Misra, Superb K</creatorcontrib><creatorcontrib>Luoma, Samuel N</creatorcontrib><creatorcontrib>Valsami-Jones, Eugenia</creatorcontrib><title>Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>Autoecology</subject><subject>Bacillariophyceae</subject><subject>Bioaccumulation</subject><subject>Biological and medical sciences</subject><subject>Diatoms - ultrastructure</subject><subject>Diet</subject><subject>Ecotoxicology and Human Environmental Health</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environmental Exposure - analysis</subject><subject>Environmental Monitoring</subject><subject>Food</subject><subject>Fresh Water</subject><subject>Fresh water ecosystems</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastropoda</subject><subject>General aspects</subject><subject>Invertebrata</subject><subject>Ions</subject><subject>Lymnaea - metabolism</subject><subject>Lymnaea stagnalis</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Mollusks</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Plankton</subject><subject>Risk assessment</subject><subject>Silver</subject><subject>Silver - metabolism</subject><subject>Solutions</subject><subject>Synecology</subject><subject>Time Factors</subject><subject>Toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUAFALgejQsuAHkIWEEItQPzP2cuhzpAoWgMQuunFuwFViT-0EaL8eDx1aBAtWlq3j-yTkGWdvOBP8ELNgzBjmHpAF14JV2mj-kCwY47Kysv68R57kfMkYE5KZx2RP8LpeWr1ckJsPfviGib71EZybx3mAycdAj68DjN5l6gMFepowf_0OU4HrUPiEbSo3Cv32aXU1Y5wzhdDRY48TpGt68mMT81y-0SnSdxBi9jfY_SLrGLyjqy8H5FEPQ8anu3OffDo9-Xh0Xl28P1sfrS4qUFJPFWJtkWvXMQTVG2FaZVqrWs2VXMrOcWe7FgzqWkAP3KKSrOMSheQorenlPnl1G3eTYqk0T83os8NhgLAtu7Gc1bpMjP1XGmt5vRTaFPniL3kZ5xRKG40xiiujBS_o9S1yKeacsG82yY9lOg1nzXZxzd3iin2-Czi3I3Z38vemCni5A5AdDH2C4Hy-d0qWxOYPBy7fF_Vvwp9Hb6xo</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Croteau, Marie-Noële</creator><creator>Misra, Superb K</creator><creator>Luoma, Samuel N</creator><creator>Valsami-Jones, Eugenia</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7U1</scope><scope>7U2</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20110801</creationdate><title>Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag</title><author>Croteau, Marie-Noële ; Misra, Superb K ; Luoma, Samuel N ; Valsami-Jones, Eugenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-ee69e15cd0ea4f828b48b94b514373dc1c9dba8e562afa19e430d13e231e398f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>Autoecology</topic><topic>Bacillariophyceae</topic><topic>Bioaccumulation</topic><topic>Biological and medical sciences</topic><topic>Diatoms - ultrastructure</topic><topic>Diet</topic><topic>Ecotoxicology and Human Environmental Health</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environmental Exposure - analysis</topic><topic>Environmental Monitoring</topic><topic>Food</topic><topic>Fresh Water</topic><topic>Fresh water ecosystems</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastropoda</topic><topic>General aspects</topic><topic>Invertebrata</topic><topic>Ions</topic><topic>Lymnaea - metabolism</topic><topic>Lymnaea stagnalis</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Mollusks</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Plankton</topic><topic>Risk assessment</topic><topic>Silver</topic><topic>Silver - metabolism</topic><topic>Solutions</topic><topic>Synecology</topic><topic>Time Factors</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croteau, Marie-Noële</creatorcontrib><creatorcontrib>Misra, Superb K</creatorcontrib><creatorcontrib>Luoma, Samuel N</creatorcontrib><creatorcontrib>Valsami-Jones, Eugenia</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croteau, Marie-Noële</au><au>Misra, Superb K</au><au>Luoma, Samuel N</au><au>Valsami-Jones, Eugenia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>45</volume><issue>15</issue><spage>6600</spage><epage>6607</epage><pages>6600-6607</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21667957</pmid><doi>10.1021/es200880c</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-08, Vol.45 (15), p.6600-6607 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_910655850 |
source | American Chemical Society (ACS); MEDLINE |
subjects | Animal and plant ecology Animal, plant and microbial ecology Animals Applied ecology Autoecology Bacillariophyceae Bioaccumulation Biological and medical sciences Diatoms - ultrastructure Diet Ecotoxicology and Human Environmental Health Ecotoxicology, biological effects of pollution Environmental Exposure - analysis Environmental Monitoring Food Fresh Water Fresh water ecosystems Freshwater Fundamental and applied biological sciences. Psychology Gastropoda General aspects Invertebrata Ions Lymnaea - metabolism Lymnaea stagnalis Metal Nanoparticles - chemistry Mollusks Nanoparticles Particle Size Plankton Risk assessment Silver Silver - metabolism Solutions Synecology Time Factors Toxicity |
title | Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20Bioaccumulation%20Dynamics%20in%20a%20Freshwater%20Invertebrate%20after%20Aqueous%20and%20Dietary%20Exposures%20to%20Nanosized%20and%20Ionic%20Ag&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Croteau,%20Marie-Noe%CC%88le&rft.date=2011-08-01&rft.volume=45&rft.issue=15&rft.spage=6600&rft.epage=6607&rft.pages=6600-6607&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es200880c&rft_dat=%3Cproquest_cross%3E899167258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884148521&rft_id=info:pmid/21667957&rfr_iscdi=true |