compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice
The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the...
Gespeichert in:
Veröffentlicht in: | Functional & integrative genomics 2010-11, Vol.10 (4), p.477-492 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 4 |
container_start_page | 477 |
container_title | Functional & integrative genomics |
container_volume | 10 |
creator | Qi, Lili Friebe, Bernd Wu, Jiajie Gu, Yongqiang Qian, Chen Gill, Bikram S |
description | The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution. |
doi_str_mv | 10.1007/s10142-010-0190-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910654241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762470078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7a8e28b15781d7a7fb6f4a582c9b879fa5560c5b1a92bb00a580e588b7b884103</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhi3UqlDaH8CltZAqTmnHX7FzBEQLElIPLVJvlu11doM28dZOQPx7ZpUtSBzowbI188zrmXkJOWLwlQHob4UBk7wCBngaqMQeOWBSmEo30rx5eos_--R9KbcAoKAR78g-ByO5BHFAfEj9xoWRnmUXVg-btOimni7jkPpIQxpKzHex0BCHMWMod4HmuOwwQVNLHSJ9nwbqhhDLmDK978YVvV9FN2JsQZGPH8jb1q1L_Li7D8nN94vf55fV9c8fV-en11WQqh4r7UzkxjOlDVtop1tft9Ipw0PjjW5ap1QNQXnmGu49AKYgKmO89sZIBuKQnMy6m5z-TtiO7bsS4nrthpimYhsGtcKx2X9JXXOpccEGyeMX5G2a8oBjWANaKiMaiRCboZBTKTm2dpO73uUHy8BujbKzURaNslujrMCaTzvhyfdx8VTxzxkEvuwAV4JbtxlX3JVnTkjQwLYcn7mCqWEZ83OHr_3-eS5qXbJumVH45hdHuW3eYJF4BIVOsyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807458394</pqid></control><display><type>article</type><title>compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qi, Lili ; Friebe, Bernd ; Wu, Jiajie ; Gu, Yongqiang ; Qian, Chen ; Gill, Bikram S</creator><creatorcontrib>Qi, Lili ; Friebe, Bernd ; Wu, Jiajie ; Gu, Yongqiang ; Qian, Chen ; Gill, Bikram S</creatorcontrib><description>The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-010-0190-3</identifier><identifier>PMID: 20842403</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino Acid Sequence ; Animal Genetics and Genomics ; Base Sequence ; Biochemistry ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Brachypodium ; Brachypodium - genetics ; Brachypodium distachyon ; Cell Biology ; Centromere - genetics ; centromeres ; Chromosomes ; Chromosomes, Plant ; Evolution, Molecular ; Expressed Sequence Tags ; fluorescence in situ hybridization ; Fundamental and applied biological sciences. Psychology ; General aspects ; genes ; Genetic markers ; genome ; Genome, Plant ; Genomics ; Grasses ; Life Sciences ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Microbial Genetics and Genomics ; Molecular Sequence Data ; Original Paper ; Oryza - genetics ; Oryza sativa ; Physical Chromosome Mapping ; plant genetics ; Plant Genetics and Genomics ; Rice ; Sequence Alignment ; species differences ; Triticeae ; Triticum - genetics ; Triticum aestivum ; Wheat</subject><ispartof>Functional & integrative genomics, 2010-11, Vol.10 (4), p.477-492</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-7a8e28b15781d7a7fb6f4a582c9b879fa5560c5b1a92bb00a580e588b7b884103</citedby><cites>FETCH-LOGICAL-c456t-7a8e28b15781d7a7fb6f4a582c9b879fa5560c5b1a92bb00a580e588b7b884103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-010-0190-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-010-0190-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23407013$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20842403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Lili</creatorcontrib><creatorcontrib>Friebe, Bernd</creatorcontrib><creatorcontrib>Wu, Jiajie</creatorcontrib><creatorcontrib>Gu, Yongqiang</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Gill, Bikram S</creatorcontrib><title>compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice</title><title>Functional & integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.</description><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Brachypodium</subject><subject>Brachypodium - genetics</subject><subject>Brachypodium distachyon</subject><subject>Cell Biology</subject><subject>Centromere - genetics</subject><subject>centromeres</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Evolution, Molecular</subject><subject>Expressed Sequence Tags</subject><subject>fluorescence in situ hybridization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>genes</subject><subject>Genetic markers</subject><subject>genome</subject><subject>Genome, Plant</subject><subject>Genomics</subject><subject>Grasses</subject><subject>Life Sciences</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Microbial Genetics and Genomics</subject><subject>Molecular Sequence Data</subject><subject>Original Paper</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Physical Chromosome Mapping</subject><subject>plant genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Rice</subject><subject>Sequence Alignment</subject><subject>species differences</subject><subject>Triticeae</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1P3DAQhi3UqlDaH8CltZAqTmnHX7FzBEQLElIPLVJvlu11doM28dZOQPx7ZpUtSBzowbI188zrmXkJOWLwlQHob4UBk7wCBngaqMQeOWBSmEo30rx5eos_--R9KbcAoKAR78g-ByO5BHFAfEj9xoWRnmUXVg-btOimni7jkPpIQxpKzHex0BCHMWMod4HmuOwwQVNLHSJ9nwbqhhDLmDK978YVvV9FN2JsQZGPH8jb1q1L_Li7D8nN94vf55fV9c8fV-en11WQqh4r7UzkxjOlDVtop1tft9Ipw0PjjW5ap1QNQXnmGu49AKYgKmO89sZIBuKQnMy6m5z-TtiO7bsS4nrthpimYhsGtcKx2X9JXXOpccEGyeMX5G2a8oBjWANaKiMaiRCboZBTKTm2dpO73uUHy8BujbKzURaNslujrMCaTzvhyfdx8VTxzxkEvuwAV4JbtxlX3JVnTkjQwLYcn7mCqWEZ83OHr_3-eS5qXbJumVH45hdHuW3eYJF4BIVOsyI</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Qi, Lili</creator><creator>Friebe, Bernd</creator><creator>Wu, Jiajie</creator><creator>Gu, Yongqiang</creator><creator>Qian, Chen</creator><creator>Gill, Bikram S</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice</title><author>Qi, Lili ; Friebe, Bernd ; Wu, Jiajie ; Gu, Yongqiang ; Qian, Chen ; Gill, Bikram S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7a8e28b15781d7a7fb6f4a582c9b879fa5560c5b1a92bb00a580e588b7b884103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Brachypodium</topic><topic>Brachypodium - genetics</topic><topic>Brachypodium distachyon</topic><topic>Cell Biology</topic><topic>Centromere - genetics</topic><topic>centromeres</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Evolution, Molecular</topic><topic>Expressed Sequence Tags</topic><topic>fluorescence in situ hybridization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>genes</topic><topic>Genetic markers</topic><topic>genome</topic><topic>Genome, Plant</topic><topic>Genomics</topic><topic>Grasses</topic><topic>Life Sciences</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Microbial Genetics and Genomics</topic><topic>Molecular Sequence Data</topic><topic>Original Paper</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Physical Chromosome Mapping</topic><topic>plant genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Rice</topic><topic>Sequence Alignment</topic><topic>species differences</topic><topic>Triticeae</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Lili</creatorcontrib><creatorcontrib>Friebe, Bernd</creatorcontrib><creatorcontrib>Wu, Jiajie</creatorcontrib><creatorcontrib>Gu, Yongqiang</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Gill, Bikram S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Functional & integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Lili</au><au>Friebe, Bernd</au><au>Wu, Jiajie</au><au>Gu, Yongqiang</au><au>Qian, Chen</au><au>Gill, Bikram S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice</atitle><jtitle>Functional & integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>477</spage><epage>492</epage><pages>477-492</pages><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20842403</pmid><doi>10.1007/s10142-010-0190-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-793X |
ispartof | Functional & integrative genomics, 2010-11, Vol.10 (4), p.477-492 |
issn | 1438-793X 1438-7948 |
language | eng |
recordid | cdi_proquest_miscellaneous_910654241 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino Acid Sequence Animal Genetics and Genomics Base Sequence Biochemistry Bioinformatics Biological and medical sciences Biomedical and Life Sciences Brachypodium Brachypodium - genetics Brachypodium distachyon Cell Biology Centromere - genetics centromeres Chromosomes Chromosomes, Plant Evolution, Molecular Expressed Sequence Tags fluorescence in situ hybridization Fundamental and applied biological sciences. Psychology General aspects genes Genetic markers genome Genome, Plant Genomics Grasses Life Sciences Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Microbial Genetics and Genomics Molecular Sequence Data Original Paper Oryza - genetics Oryza sativa Physical Chromosome Mapping plant genetics Plant Genetics and Genomics Rice Sequence Alignment species differences Triticeae Triticum - genetics Triticum aestivum Wheat |
title | compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=compact%20Brachypodium%20genome%20conserves%20centromeric%20regions%20of%20a%20common%20ancestor%20with%20wheat%20and%20rice&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Qi,%20Lili&rft.date=2010-11-01&rft.volume=10&rft.issue=4&rft.spage=477&rft.epage=492&rft.pages=477-492&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-010-0190-3&rft_dat=%3Cproquest_cross%3E762470078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807458394&rft_id=info:pmid/20842403&rfr_iscdi=true |