Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing
Our group has developed an electrohydraulic total artificial heart (EHTAH) with two diaphragm-type blood pumps. Cavitation in a mechanical heart valve (MHV) causes valve surface damage. The objective of this study was to investigate the possibility of estimating the MHV cavitation intensity using th...
Gespeichert in:
Veröffentlicht in: | Journal of artificial organs 2010-04, Vol.13 (1), p.17-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Journal of artificial organs |
container_volume | 13 |
creator | Lee, Hwansung Homma, Akihiko Tatsumi, Eisuke Taenaka, Yoshiyuki |
description | Our group has developed an electrohydraulic total artificial heart (EHTAH) with two diaphragm-type blood pumps. Cavitation in a mechanical heart valve (MHV) causes valve surface damage. The objective of this study was to investigate the possibility of estimating the MHV cavitation intensity using the slope of the driving pressure just before valve closure in this artificial heart. Twenty-five and twenty-three-millimeter Medtronic Hall valves were mounted at the inlet and outlet ports, respectively, of both pumps. The EHTAH was connected to the experimental endurance tester developed by our group, and tested under physiological pressure conditions. Cavitation pits could be seen on the inlet valve surface and on the outlet valve surface of the right and left blood pumps. The pits on the inlet valves were more severe than those on the outlet valves in both blood pumps, and the cavitation pits on the inlet valve of the left blood pump were more severe than those on the inlet valve of the right blood pump. The longer the pump running time, the more severe the cavitation pits on the valve surfaces. Cavitation pits were concentrated near the contact area with the valve stop. The major cause of these pits was the squeeze flow between the leaflet and valve stop. |
doi_str_mv | 10.1007/s10047-010-0490-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910653981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>910653981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-5cf20bd09fc95bc0955df6811185d3ca179dde14d633bfab3e9ca7611828248d3</originalsourceid><addsrcrecordid>eNqFkV1L5TAQhoOsqKv-AG-WwF54VZ1Jmqa5XMSPBcEbvQ5pPjTS0x6T9sD-e3OsyrKwCENmwjzzTsJLyAnCGQLI81zOWlaAUEGtoOI75AAbVBUoqL-VuuZ1JRlT--R7zs8AKIWEPbLPAIVgih-Ql7su-7QxUxwHOgZqzSZOy20dp0xLXnn7ZIZoTU-fvEkT3Zh-42meUzDWZxoHakqkKYZo4yc1Z--2vRJFMo108nmKw-MR2Q2mz_74PR-Sh6vL-4ub6vbu-vfFr9vKCsamStjAoHOgglWis6CEcKFpEbEVjluDUjnnsXYN510wHffKGtmUNmtZ3Tp-SE4X3XUaX-ayW69itr7vzeDHOWuF0AiuWvySlJzzRrE38uc_5PM4p6F8Q5eH8RpbKUWhcKFsGnNOPuh1iiuT_mgEvTVOL8bpYpzeGqd5mfnxrjx3K-8-Jz6cKgBbgFxaw6NPf63-r-orxFijSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113418775</pqid></control><display><type>article</type><title>Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Lee, Hwansung ; Homma, Akihiko ; Tatsumi, Eisuke ; Taenaka, Yoshiyuki</creator><creatorcontrib>Lee, Hwansung ; Homma, Akihiko ; Tatsumi, Eisuke ; Taenaka, Yoshiyuki</creatorcontrib><description>Our group has developed an electrohydraulic total artificial heart (EHTAH) with two diaphragm-type blood pumps. Cavitation in a mechanical heart valve (MHV) causes valve surface damage. The objective of this study was to investigate the possibility of estimating the MHV cavitation intensity using the slope of the driving pressure just before valve closure in this artificial heart. Twenty-five and twenty-three-millimeter Medtronic Hall valves were mounted at the inlet and outlet ports, respectively, of both pumps. The EHTAH was connected to the experimental endurance tester developed by our group, and tested under physiological pressure conditions. Cavitation pits could be seen on the inlet valve surface and on the outlet valve surface of the right and left blood pumps. The pits on the inlet valves were more severe than those on the outlet valves in both blood pumps, and the cavitation pits on the inlet valve of the left blood pump were more severe than those on the inlet valve of the right blood pump. The longer the pump running time, the more severe the cavitation pits on the valve surfaces. Cavitation pits were concentrated near the contact area with the valve stop. The major cause of these pits was the squeeze flow between the leaflet and valve stop.</description><identifier>ISSN: 1434-7229</identifier><identifier>EISSN: 1619-0904</identifier><identifier>DOI: 10.1007/s10047-010-0490-3</identifier><identifier>PMID: 20155293</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Biomedical Engineering and Bioengineering ; Blood Flow Velocity ; Cardiac Surgery ; Cavitation ; Consulting firms ; Equipment Design ; Equipment Failure Analysis ; Heart Valve Prosthesis ; Heart, Artificial ; Materials Testing ; Medicine ; Medicine & Public Health ; Nephrology ; Original Article ; Prosthesis Design ; Pulsatile Flow ; Valves</subject><ispartof>Journal of artificial organs, 2010-04, Vol.13 (1), p.17-23</ispartof><rights>The Japanese Society for Artificial Organs 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-5cf20bd09fc95bc0955df6811185d3ca179dde14d633bfab3e9ca7611828248d3</citedby><cites>FETCH-LOGICAL-c522t-5cf20bd09fc95bc0955df6811185d3ca179dde14d633bfab3e9ca7611828248d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10047-010-0490-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10047-010-0490-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20155293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hwansung</creatorcontrib><creatorcontrib>Homma, Akihiko</creatorcontrib><creatorcontrib>Tatsumi, Eisuke</creatorcontrib><creatorcontrib>Taenaka, Yoshiyuki</creatorcontrib><title>Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing</title><title>Journal of artificial organs</title><addtitle>J Artif Organs</addtitle><addtitle>J Artif Organs</addtitle><description>Our group has developed an electrohydraulic total artificial heart (EHTAH) with two diaphragm-type blood pumps. Cavitation in a mechanical heart valve (MHV) causes valve surface damage. The objective of this study was to investigate the possibility of estimating the MHV cavitation intensity using the slope of the driving pressure just before valve closure in this artificial heart. Twenty-five and twenty-three-millimeter Medtronic Hall valves were mounted at the inlet and outlet ports, respectively, of both pumps. The EHTAH was connected to the experimental endurance tester developed by our group, and tested under physiological pressure conditions. Cavitation pits could be seen on the inlet valve surface and on the outlet valve surface of the right and left blood pumps. The pits on the inlet valves were more severe than those on the outlet valves in both blood pumps, and the cavitation pits on the inlet valve of the left blood pump were more severe than those on the inlet valve of the right blood pump. The longer the pump running time, the more severe the cavitation pits on the valve surfaces. Cavitation pits were concentrated near the contact area with the valve stop. The major cause of these pits was the squeeze flow between the leaflet and valve stop.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Blood Flow Velocity</subject><subject>Cardiac Surgery</subject><subject>Cavitation</subject><subject>Consulting firms</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Heart Valve Prosthesis</subject><subject>Heart, Artificial</subject><subject>Materials Testing</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Nephrology</subject><subject>Original Article</subject><subject>Prosthesis Design</subject><subject>Pulsatile Flow</subject><subject>Valves</subject><issn>1434-7229</issn><issn>1619-0904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV1L5TAQhoOsqKv-AG-WwF54VZ1Jmqa5XMSPBcEbvQ5pPjTS0x6T9sD-e3OsyrKwCENmwjzzTsJLyAnCGQLI81zOWlaAUEGtoOI75AAbVBUoqL-VuuZ1JRlT--R7zs8AKIWEPbLPAIVgih-Ql7su-7QxUxwHOgZqzSZOy20dp0xLXnn7ZIZoTU-fvEkT3Zh-42meUzDWZxoHakqkKYZo4yc1Z--2vRJFMo108nmKw-MR2Q2mz_74PR-Sh6vL-4ub6vbu-vfFr9vKCsamStjAoHOgglWis6CEcKFpEbEVjluDUjnnsXYN510wHffKGtmUNmtZ3Tp-SE4X3XUaX-ayW69itr7vzeDHOWuF0AiuWvySlJzzRrE38uc_5PM4p6F8Q5eH8RpbKUWhcKFsGnNOPuh1iiuT_mgEvTVOL8bpYpzeGqd5mfnxrjx3K-8-Jz6cKgBbgFxaw6NPf63-r-orxFijSg</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Lee, Hwansung</creator><creator>Homma, Akihiko</creator><creator>Tatsumi, Eisuke</creator><creator>Taenaka, Yoshiyuki</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20100401</creationdate><title>Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing</title><author>Lee, Hwansung ; Homma, Akihiko ; Tatsumi, Eisuke ; Taenaka, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-5cf20bd09fc95bc0955df6811185d3ca179dde14d633bfab3e9ca7611828248d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Blood Flow Velocity</topic><topic>Cardiac Surgery</topic><topic>Cavitation</topic><topic>Consulting firms</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Heart Valve Prosthesis</topic><topic>Heart, Artificial</topic><topic>Materials Testing</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Nephrology</topic><topic>Original Article</topic><topic>Prosthesis Design</topic><topic>Pulsatile Flow</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hwansung</creatorcontrib><creatorcontrib>Homma, Akihiko</creatorcontrib><creatorcontrib>Tatsumi, Eisuke</creatorcontrib><creatorcontrib>Taenaka, Yoshiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hwansung</au><au>Homma, Akihiko</au><au>Tatsumi, Eisuke</au><au>Taenaka, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing</atitle><jtitle>Journal of artificial organs</jtitle><stitle>J Artif Organs</stitle><addtitle>J Artif Organs</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>13</volume><issue>1</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>1434-7229</issn><eissn>1619-0904</eissn><abstract>Our group has developed an electrohydraulic total artificial heart (EHTAH) with two diaphragm-type blood pumps. Cavitation in a mechanical heart valve (MHV) causes valve surface damage. The objective of this study was to investigate the possibility of estimating the MHV cavitation intensity using the slope of the driving pressure just before valve closure in this artificial heart. Twenty-five and twenty-three-millimeter Medtronic Hall valves were mounted at the inlet and outlet ports, respectively, of both pumps. The EHTAH was connected to the experimental endurance tester developed by our group, and tested under physiological pressure conditions. Cavitation pits could be seen on the inlet valve surface and on the outlet valve surface of the right and left blood pumps. The pits on the inlet valves were more severe than those on the outlet valves in both blood pumps, and the cavitation pits on the inlet valve of the left blood pump were more severe than those on the inlet valve of the right blood pump. The longer the pump running time, the more severe the cavitation pits on the valve surfaces. Cavitation pits were concentrated near the contact area with the valve stop. The major cause of these pits was the squeeze flow between the leaflet and valve stop.</abstract><cop>Japan</cop><pub>Springer Japan</pub><pmid>20155293</pmid><doi>10.1007/s10047-010-0490-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-7229 |
ispartof | Journal of artificial organs, 2010-04, Vol.13 (1), p.17-23 |
issn | 1434-7229 1619-0904 |
language | eng |
recordid | cdi_proquest_miscellaneous_910653981 |
source | MEDLINE; SpringerNature Complete Journals |
subjects | Biomedical Engineering and Bioengineering Blood Flow Velocity Cardiac Surgery Cavitation Consulting firms Equipment Design Equipment Failure Analysis Heart Valve Prosthesis Heart, Artificial Materials Testing Medicine Medicine & Public Health Nephrology Original Article Prosthesis Design Pulsatile Flow Valves |
title | Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20cavitation%20pits%20on%20mechanical%20heart%20valve%20surfaces%20in%20an%20artificial%20heart%20used%20in%20in%20vitro%20testing&rft.jtitle=Journal%20of%20artificial%20organs&rft.au=Lee,%20Hwansung&rft.date=2010-04-01&rft.volume=13&rft.issue=1&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=1434-7229&rft.eissn=1619-0904&rft_id=info:doi/10.1007/s10047-010-0490-3&rft_dat=%3Cproquest_cross%3E910653981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113418775&rft_id=info:pmid/20155293&rfr_iscdi=true |