MemLoci: predicting subcellular localization of membrane proteins in eukaryotes

Subcellular localization is a key feature in the process of functional annotation of both globular and membrane proteins. In the absence of experimental data, protein localization is inferred on the basis of annotation transfer upon sequence similarity search. However, predictive tools are necessary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2011-05, Vol.27 (9), p.1224-1230
Hauptverfasser: PIERLEONI, Andrea, MARTELLI, Pier Luigi, CASADIO, Rita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1230
container_issue 9
container_start_page 1224
container_title Bioinformatics
container_volume 27
creator PIERLEONI, Andrea
MARTELLI, Pier Luigi
CASADIO, Rita
description Subcellular localization is a key feature in the process of functional annotation of both globular and membrane proteins. In the absence of experimental data, protein localization is inferred on the basis of annotation transfer upon sequence similarity search. However, predictive tools are necessary when the localization of homologs is not known. This is so particularly for membrane proteins. Furthermore, most of the available predictors of subcellular localization are specifically trained on globular proteins and poorly perform on membrane proteins. Here we develop MemLoci, a new support vector machine-based tool that discriminates three membrane protein localizations: plasma, internal and organelle membrane. When tested on an independent set, MemLoci outperforms existing methods, reaching an overall accuracy of 70% on predicting the location in the three membrane types, with a generalized correlation coefficient as high as 0.50. The MemLoci server is freely available on the web at: http://mu2py.biocomp.unibo.it/memloci. Datasets described in the article can be downloaded at the same site.
doi_str_mv 10.1093/bioinformatics/btr108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910637401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>862266774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-31f88afc88704660803a6c81c33ce3ec6132d520ede02fecb57099c31e79c5583</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EolD4CaAsiCn0HMeOw4YqvqSiLjBHjnNGhiQudjLAr8dVSxETk8_yc3evH0LOKFxRKNmsts72xvlODVaHWT14CnKPHFEmijSXlO7vamATchzCGwBw4OKQTLL1ixTlEVk-Ybdw2l4nK4-N1YPtX5Mw1hrbdmyVT1qnVWu_4hbXJ84kHXa1Vz1G3g1o-5DYPsHxXfnPeA8n5MCoNuDp9pySl7vb5_lDuljeP85vFqnOJRtSRo2UymgpC8iFgJhRCS2pZkwjQy0oyxqeATYImUFd8wLKUjOKRak5l2xKLjdzY4yPEcNQdTasQ8dobgxVSUGwIgf6LylFlglRFHkk-YbU3oXg0VQrb7v4sYpCtZZe_ZVebaTHvvPthrHusNl1_ViOwMUWUCHaNNGftuGXy6HkjJbsG7fdkK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862266774</pqid></control><display><type>article</type><title>MemLoci: predicting subcellular localization of membrane proteins in eukaryotes</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>PIERLEONI, Andrea ; MARTELLI, Pier Luigi ; CASADIO, Rita</creator><creatorcontrib>PIERLEONI, Andrea ; MARTELLI, Pier Luigi ; CASADIO, Rita</creatorcontrib><description>Subcellular localization is a key feature in the process of functional annotation of both globular and membrane proteins. In the absence of experimental data, protein localization is inferred on the basis of annotation transfer upon sequence similarity search. However, predictive tools are necessary when the localization of homologs is not known. This is so particularly for membrane proteins. Furthermore, most of the available predictors of subcellular localization are specifically trained on globular proteins and poorly perform on membrane proteins. Here we develop MemLoci, a new support vector machine-based tool that discriminates three membrane protein localizations: plasma, internal and organelle membrane. When tested on an independent set, MemLoci outperforms existing methods, reaching an overall accuracy of 70% on predicting the location in the three membrane types, with a generalized correlation coefficient as high as 0.50. The MemLoci server is freely available on the web at: http://mu2py.biocomp.unibo.it/memloci. Datasets described in the article can be downloaded at the same site.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btr108</identifier><identifier>PMID: 21367869</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bioinformatics ; Biological and medical sciences ; Computational Biology - methods ; Databases, Protein ; Eukaryotic Cells - chemistry ; Fundamental and applied biological sciences. Psychology ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Membrane Proteins - chemistry ; Organelles - chemistry ; Protein Sorting Signals ; Protein Transport ; Support Vector Machine</subject><ispartof>Bioinformatics, 2011-05, Vol.27 (9), p.1224-1230</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-31f88afc88704660803a6c81c33ce3ec6132d520ede02fecb57099c31e79c5583</citedby><cites>FETCH-LOGICAL-c483t-31f88afc88704660803a6c81c33ce3ec6132d520ede02fecb57099c31e79c5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24095319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21367869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PIERLEONI, Andrea</creatorcontrib><creatorcontrib>MARTELLI, Pier Luigi</creatorcontrib><creatorcontrib>CASADIO, Rita</creatorcontrib><title>MemLoci: predicting subcellular localization of membrane proteins in eukaryotes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Subcellular localization is a key feature in the process of functional annotation of both globular and membrane proteins. In the absence of experimental data, protein localization is inferred on the basis of annotation transfer upon sequence similarity search. However, predictive tools are necessary when the localization of homologs is not known. This is so particularly for membrane proteins. Furthermore, most of the available predictors of subcellular localization are specifically trained on globular proteins and poorly perform on membrane proteins. Here we develop MemLoci, a new support vector machine-based tool that discriminates three membrane protein localizations: plasma, internal and organelle membrane. When tested on an independent set, MemLoci outperforms existing methods, reaching an overall accuracy of 70% on predicting the location in the three membrane types, with a generalized correlation coefficient as high as 0.50. The MemLoci server is freely available on the web at: http://mu2py.biocomp.unibo.it/memloci. Datasets described in the article can be downloaded at the same site.</description><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Eukaryotic Cells - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Membrane Proteins - chemistry</subject><subject>Organelles - chemistry</subject><subject>Protein Sorting Signals</subject><subject>Protein Transport</subject><subject>Support Vector Machine</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EolD4CaAsiCn0HMeOw4YqvqSiLjBHjnNGhiQudjLAr8dVSxETk8_yc3evH0LOKFxRKNmsts72xvlODVaHWT14CnKPHFEmijSXlO7vamATchzCGwBw4OKQTLL1ixTlEVk-Ybdw2l4nK4-N1YPtX5Mw1hrbdmyVT1qnVWu_4hbXJ84kHXa1Vz1G3g1o-5DYPsHxXfnPeA8n5MCoNuDp9pySl7vb5_lDuljeP85vFqnOJRtSRo2UymgpC8iFgJhRCS2pZkwjQy0oyxqeATYImUFd8wLKUjOKRak5l2xKLjdzY4yPEcNQdTasQ8dobgxVSUGwIgf6LylFlglRFHkk-YbU3oXg0VQrb7v4sYpCtZZe_ZVebaTHvvPthrHusNl1_ViOwMUWUCHaNNGftuGXy6HkjJbsG7fdkK4</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>PIERLEONI, Andrea</creator><creator>MARTELLI, Pier Luigi</creator><creator>CASADIO, Rita</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110501</creationdate><title>MemLoci: predicting subcellular localization of membrane proteins in eukaryotes</title><author>PIERLEONI, Andrea ; MARTELLI, Pier Luigi ; CASADIO, Rita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-31f88afc88704660803a6c81c33ce3ec6132d520ede02fecb57099c31e79c5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Eukaryotic Cells - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Membrane Proteins - chemistry</topic><topic>Organelles - chemistry</topic><topic>Protein Sorting Signals</topic><topic>Protein Transport</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PIERLEONI, Andrea</creatorcontrib><creatorcontrib>MARTELLI, Pier Luigi</creatorcontrib><creatorcontrib>CASADIO, Rita</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PIERLEONI, Andrea</au><au>MARTELLI, Pier Luigi</au><au>CASADIO, Rita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MemLoci: predicting subcellular localization of membrane proteins in eukaryotes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>27</volume><issue>9</issue><spage>1224</spage><epage>1230</epage><pages>1224-1230</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Subcellular localization is a key feature in the process of functional annotation of both globular and membrane proteins. In the absence of experimental data, protein localization is inferred on the basis of annotation transfer upon sequence similarity search. However, predictive tools are necessary when the localization of homologs is not known. This is so particularly for membrane proteins. Furthermore, most of the available predictors of subcellular localization are specifically trained on globular proteins and poorly perform on membrane proteins. Here we develop MemLoci, a new support vector machine-based tool that discriminates three membrane protein localizations: plasma, internal and organelle membrane. When tested on an independent set, MemLoci outperforms existing methods, reaching an overall accuracy of 70% on predicting the location in the three membrane types, with a generalized correlation coefficient as high as 0.50. The MemLoci server is freely available on the web at: http://mu2py.biocomp.unibo.it/memloci. Datasets described in the article can be downloaded at the same site.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21367869</pmid><doi>10.1093/bioinformatics/btr108</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2011-05, Vol.27 (9), p.1224-1230
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_proquest_miscellaneous_910637401
source PubMed Central Free; MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bioinformatics
Biological and medical sciences
Computational Biology - methods
Databases, Protein
Eukaryotic Cells - chemistry
Fundamental and applied biological sciences. Psychology
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Membrane Proteins - chemistry
Organelles - chemistry
Protein Sorting Signals
Protein Transport
Support Vector Machine
title MemLoci: predicting subcellular localization of membrane proteins in eukaryotes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MemLoci:%20predicting%20subcellular%20localization%20of%20membrane%20proteins%20in%20eukaryotes&rft.jtitle=Bioinformatics&rft.au=PIERLEONI,%20Andrea&rft.date=2011-05-01&rft.volume=27&rft.issue=9&rft.spage=1224&rft.epage=1230&rft.pages=1224-1230&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btr108&rft_dat=%3Cproquest_cross%3E862266774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862266774&rft_id=info:pmid/21367869&rfr_iscdi=true