Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution

The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2011-11, Vol.32 (23), p.3341-3347
Hauptverfasser: Chang, Chien C., Kuo, Chih-Yu, Wang, Chang-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3347
container_issue 23
container_start_page 3341
container_title Electrophoresis
container_volume 32
creator Chang, Chien C.
Kuo, Chih-Yu
Wang, Chang-Yi
description The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors
doi_str_mv 10.1002/elps.201100181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_908013087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>908013087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvLYskTZsUoZ203sLAGVZ3lIgFhajjMBQxIXOxWUr8eoULFjZY3n3CvNIWSXwpACsANspmHIgMaBSrpCBjRjLGW55KtkAFTwFCTPNshmCC8AMCpGo3WywRgIlgEMyP1DF3rU1TzBBk3vnQutCzYktkt00lrjnXnWXYdN8m775-TW2RBclx65pv9s4yKJa_-ESWVD7205663rtslarZuAOz_vFnk4Gd8fn6WTm9Pz48NJarhkNC2RCyNpZQStueG5pExrIXj8Z0KDKUdZgVgUBWVGl1ldIc9FXssyL-MZWcG3yP6id-rd2wxDr1obDDaN7tDNgipAAuUgRSSHCzLeE4LHWk29bbWfKwrqW6T6FqmWImNg76d6VrZYLfFfcxEoFsC7bXD-T50aT27v_pani2x0hh_LrPavKhdcZOrx-lTJO3lBL9mZuuJfqPKP-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908013087</pqid></control><display><type>article</type><title>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Chang, Chien C. ; Kuo, Chih-Yu ; Wang, Chang-Yi</creator><creatorcontrib>Chang, Chien C. ; Kuo, Chih-Yu ; Wang, Chang-Yi</creatorcontrib><description>The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors &lt;1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time‐harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time‐harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201100181</identifier><identifier>PMID: 22072500</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Electroosmosis ; Microfluidics - instrumentation ; Models, Theoretical ; Oscillatory EOF ; Poisson-Boltzmann equation ; Static Electricity ; Transient EOF</subject><ispartof>Electrophoresis, 2011-11, Vol.32 (23), p.3341-3347</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</citedby><cites>FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201100181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201100181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22072500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Chien C.</creatorcontrib><creatorcontrib>Kuo, Chih-Yu</creatorcontrib><creatorcontrib>Wang, Chang-Yi</creatorcontrib><title>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors &lt;1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time‐harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time‐harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ.</description><subject>Electroosmosis</subject><subject>Microfluidics - instrumentation</subject><subject>Models, Theoretical</subject><subject>Oscillatory EOF</subject><subject>Poisson-Boltzmann equation</subject><subject>Static Electricity</subject><subject>Transient EOF</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EgvLYskTZsUoZ203sLAGVZ3lIgFhajjMBQxIXOxWUr8eoULFjZY3n3CvNIWSXwpACsANspmHIgMaBSrpCBjRjLGW55KtkAFTwFCTPNshmCC8AMCpGo3WywRgIlgEMyP1DF3rU1TzBBk3vnQutCzYktkt00lrjnXnWXYdN8m775-TW2RBclx65pv9s4yKJa_-ESWVD7205663rtslarZuAOz_vFnk4Gd8fn6WTm9Pz48NJarhkNC2RCyNpZQStueG5pExrIXj8Z0KDKUdZgVgUBWVGl1ldIc9FXssyL-MZWcG3yP6id-rd2wxDr1obDDaN7tDNgipAAuUgRSSHCzLeE4LHWk29bbWfKwrqW6T6FqmWImNg76d6VrZYLfFfcxEoFsC7bXD-T50aT27v_pani2x0hh_LrPavKhdcZOrx-lTJO3lBL9mZuuJfqPKP-A</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Chang, Chien C.</creator><creator>Kuo, Chih-Yu</creator><creator>Wang, Chang-Yi</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201111</creationdate><title>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</title><author>Chang, Chien C. ; Kuo, Chih-Yu ; Wang, Chang-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electroosmosis</topic><topic>Microfluidics - instrumentation</topic><topic>Models, Theoretical</topic><topic>Oscillatory EOF</topic><topic>Poisson-Boltzmann equation</topic><topic>Static Electricity</topic><topic>Transient EOF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chien C.</creatorcontrib><creatorcontrib>Kuo, Chih-Yu</creatorcontrib><creatorcontrib>Wang, Chang-Yi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chien C.</au><au>Kuo, Chih-Yu</au><au>Wang, Chang-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2011-11</date><risdate>2011</risdate><volume>32</volume><issue>23</issue><spage>3341</spage><epage>3347</epage><pages>3341-3347</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors &lt;1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time‐harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time‐harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22072500</pmid><doi>10.1002/elps.201100181</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2011-11, Vol.32 (23), p.3341-3347
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_908013087
source MEDLINE; Access via Wiley Online Library
subjects Electroosmosis
Microfluidics - instrumentation
Models, Theoretical
Oscillatory EOF
Poisson-Boltzmann equation
Static Electricity
Transient EOF
title Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20electroosmosis%20in%20a%20microchannel%20with%20Poisson-Boltzmann%20charge%20distribution&rft.jtitle=Electrophoresis&rft.au=Chang,%20Chien%20C.&rft.date=2011-11&rft.volume=32&rft.issue=23&rft.spage=3341&rft.epage=3347&rft.pages=3341-3347&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201100181&rft_dat=%3Cproquest_cross%3E908013087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908013087&rft_id=info:pmid/22072500&rfr_iscdi=true