Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution
The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strengt...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2011-11, Vol.32 (23), p.3341-3347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3347 |
---|---|
container_issue | 23 |
container_start_page | 3341 |
container_title | Electrophoresis |
container_volume | 32 |
creator | Chang, Chien C. Kuo, Chih-Yu Wang, Chang-Yi |
description | The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors |
doi_str_mv | 10.1002/elps.201100181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_908013087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>908013087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvLYskTZsUoZ203sLAGVZ3lIgFhajjMBQxIXOxWUr8eoULFjZY3n3CvNIWSXwpACsANspmHIgMaBSrpCBjRjLGW55KtkAFTwFCTPNshmCC8AMCpGo3WywRgIlgEMyP1DF3rU1TzBBk3vnQutCzYktkt00lrjnXnWXYdN8m775-TW2RBclx65pv9s4yKJa_-ESWVD7205663rtslarZuAOz_vFnk4Gd8fn6WTm9Pz48NJarhkNC2RCyNpZQStueG5pExrIXj8Z0KDKUdZgVgUBWVGl1ldIc9FXssyL-MZWcG3yP6id-rd2wxDr1obDDaN7tDNgipAAuUgRSSHCzLeE4LHWk29bbWfKwrqW6T6FqmWImNg76d6VrZYLfFfcxEoFsC7bXD-T50aT27v_pani2x0hh_LrPavKhdcZOrx-lTJO3lBL9mZuuJfqPKP-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908013087</pqid></control><display><type>article</type><title>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Chang, Chien C. ; Kuo, Chih-Yu ; Wang, Chang-Yi</creator><creatorcontrib>Chang, Chien C. ; Kuo, Chih-Yu ; Wang, Chang-Yi</creatorcontrib><description>The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors <1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time‐harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time‐harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201100181</identifier><identifier>PMID: 22072500</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Electroosmosis ; Microfluidics - instrumentation ; Models, Theoretical ; Oscillatory EOF ; Poisson-Boltzmann equation ; Static Electricity ; Transient EOF</subject><ispartof>Electrophoresis, 2011-11, Vol.32 (23), p.3341-3347</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</citedby><cites>FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201100181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201100181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22072500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Chien C.</creatorcontrib><creatorcontrib>Kuo, Chih-Yu</creatorcontrib><creatorcontrib>Wang, Chang-Yi</creatorcontrib><title>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors <1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time‐harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time‐harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ.</description><subject>Electroosmosis</subject><subject>Microfluidics - instrumentation</subject><subject>Models, Theoretical</subject><subject>Oscillatory EOF</subject><subject>Poisson-Boltzmann equation</subject><subject>Static Electricity</subject><subject>Transient EOF</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EgvLYskTZsUoZ203sLAGVZ3lIgFhajjMBQxIXOxWUr8eoULFjZY3n3CvNIWSXwpACsANspmHIgMaBSrpCBjRjLGW55KtkAFTwFCTPNshmCC8AMCpGo3WywRgIlgEMyP1DF3rU1TzBBk3vnQutCzYktkt00lrjnXnWXYdN8m775-TW2RBclx65pv9s4yKJa_-ESWVD7205663rtslarZuAOz_vFnk4Gd8fn6WTm9Pz48NJarhkNC2RCyNpZQStueG5pExrIXj8Z0KDKUdZgVgUBWVGl1ldIc9FXssyL-MZWcG3yP6id-rd2wxDr1obDDaN7tDNgipAAuUgRSSHCzLeE4LHWk29bbWfKwrqW6T6FqmWImNg76d6VrZYLfFfcxEoFsC7bXD-T50aT27v_pani2x0hh_LrPavKhdcZOrx-lTJO3lBL9mZuuJfqPKP-A</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Chang, Chien C.</creator><creator>Kuo, Chih-Yu</creator><creator>Wang, Chang-Yi</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201111</creationdate><title>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</title><author>Chang, Chien C. ; Kuo, Chih-Yu ; Wang, Chang-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3821-be37c81dc71f3c36812aa773be327a0cb459ee99912cab5fde3676f8b6b944593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electroosmosis</topic><topic>Microfluidics - instrumentation</topic><topic>Models, Theoretical</topic><topic>Oscillatory EOF</topic><topic>Poisson-Boltzmann equation</topic><topic>Static Electricity</topic><topic>Transient EOF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chien C.</creatorcontrib><creatorcontrib>Kuo, Chih-Yu</creatorcontrib><creatorcontrib>Wang, Chang-Yi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chien C.</au><au>Kuo, Chih-Yu</au><au>Wang, Chang-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2011-11</date><risdate>2011</risdate><volume>32</volume><issue>23</issue><spage>3341</spage><epage>3347</epage><pages>3341-3347</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson–Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ≪1), we recover the linearized PB equation – the Debye–Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors <1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time‐harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time‐harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22072500</pmid><doi>10.1002/elps.201100181</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2011-11, Vol.32 (23), p.3341-3347 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_908013087 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Electroosmosis Microfluidics - instrumentation Models, Theoretical Oscillatory EOF Poisson-Boltzmann equation Static Electricity Transient EOF |
title | Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20electroosmosis%20in%20a%20microchannel%20with%20Poisson-Boltzmann%20charge%20distribution&rft.jtitle=Electrophoresis&rft.au=Chang,%20Chien%20C.&rft.date=2011-11&rft.volume=32&rft.issue=23&rft.spage=3341&rft.epage=3347&rft.pages=3341-3347&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201100181&rft_dat=%3Cproquest_cross%3E908013087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908013087&rft_id=info:pmid/22072500&rfr_iscdi=true |