Programmable Chemical Gradient Patterns by Soft Grayscale Lithography

A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small 2011-12, Vol.7 (23), p.3350-3362
Hauptverfasser: Bowen, Audrey M., Ritchey, Joshua A., Moore, Jeffrey S., Nuzzo, Ralph G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3362
container_issue 23
container_start_page 3350
container_title Small
container_volume 7
creator Bowen, Audrey M.
Ritchey, Joshua A.
Moore, Jeffrey S.
Nuzzo, Ralph G.
description A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding. The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.
doi_str_mv 10.1002/smll.201100920
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_907999246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4180918111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EoqWwZYkiWMAmgx_xawmjdkBKoVIrsbQczw3jksfU9gjy73FIGSEWsLKte76ja30IPSd4RTCmb2PfdSuKSX5oih-gUyIIK4Wi-uHxTvAJehLjLcaM0Eo-RieUaC015afo_CqMX4Pte9t0UKx30Htnu2IT7NbDkIormxKEIRbNVFyPbZonU8wIFLVPuzm7301P0aPWdhGe3Z9n6Obi_Gb9oaw_bz6u39Wl43nBUvNGqKraVlK3krtWOUqIdVIqaBRRLeVSMgBhmQZlccuEVNIyRhlXecbO0MtFO8bkTXQ-gdu5cRjAJUOw4KqaodcLtA_j3QFiMr2PDrrODjAeotFYaq1pJTL55p8kUYwLoeUv6au_0NvxEIb810wRTSjGUmVqtVAujDEGaM0--N6GKS9n5rrMXJc51pUDL-61h6aH7RH_3U8G9AJ89x1M_9GZ68u6_lNeLlkfE_w4Zm34ZoRkkpsvnzZmrUT9nl9cGsF-Ar10rUs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819120078</pqid></control><display><type>article</type><title>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bowen, Audrey M. ; Ritchey, Joshua A. ; Moore, Jeffrey S. ; Nuzzo, Ralph G.</creator><creatorcontrib>Bowen, Audrey M. ; Ritchey, Joshua A. ; Moore, Jeffrey S. ; Nuzzo, Ralph G. ; Energy Frontier Research Centers (EFRC) ; Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding. The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201100920</identifier><identifier>PMID: 21997925</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amplitudes ; Coumarins - chemistry ; Covalence ; Dimethylpolysiloxanes - chemistry ; Exposure ; gradient ; grayscale lithography ; Irradiation ; Lithography ; Masks ; Microfluidics ; Nanotechnology ; Nanotechnology - methods ; photocleavable ; self-assembled monolayer ; soft lithography ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Surface properties ; Surface Properties - radiation effects ; Ultraviolet Rays ; Vacuum</subject><ispartof>Small, 2011-12, Vol.7 (23), p.3350-3362</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</citedby><cites>FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201100920$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201100920$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21997925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1065847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowen, Audrey M.</creatorcontrib><creatorcontrib>Ritchey, Joshua A.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</title><title>Small</title><addtitle>Small</addtitle><description>A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding. The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.</description><subject>Amplitudes</subject><subject>Coumarins - chemistry</subject><subject>Covalence</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Exposure</subject><subject>gradient</subject><subject>grayscale lithography</subject><subject>Irradiation</subject><subject>Lithography</subject><subject>Masks</subject><subject>Microfluidics</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>photocleavable</subject><subject>self-assembled monolayer</subject><subject>soft lithography</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Surface properties</subject><subject>Surface Properties - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>Vacuum</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi0EoqWwZYkiWMAmgx_xawmjdkBKoVIrsbQczw3jksfU9gjy73FIGSEWsLKte76ja30IPSd4RTCmb2PfdSuKSX5oih-gUyIIK4Wi-uHxTvAJehLjLcaM0Eo-RieUaC015afo_CqMX4Pte9t0UKx30Htnu2IT7NbDkIormxKEIRbNVFyPbZonU8wIFLVPuzm7301P0aPWdhGe3Z9n6Obi_Gb9oaw_bz6u39Wl43nBUvNGqKraVlK3krtWOUqIdVIqaBRRLeVSMgBhmQZlccuEVNIyRhlXecbO0MtFO8bkTXQ-gdu5cRjAJUOw4KqaodcLtA_j3QFiMr2PDrrODjAeotFYaq1pJTL55p8kUYwLoeUv6au_0NvxEIb810wRTSjGUmVqtVAujDEGaM0--N6GKS9n5rrMXJc51pUDL-61h6aH7RH_3U8G9AJ89x1M_9GZ68u6_lNeLlkfE_w4Zm34ZoRkkpsvnzZmrUT9nl9cGsF-Ar10rUs</recordid><startdate>20111202</startdate><enddate>20111202</enddate><creator>Bowen, Audrey M.</creator><creator>Ritchey, Joshua A.</creator><creator>Moore, Jeffrey S.</creator><creator>Nuzzo, Ralph G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20111202</creationdate><title>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</title><author>Bowen, Audrey M. ; Ritchey, Joshua A. ; Moore, Jeffrey S. ; Nuzzo, Ralph G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitudes</topic><topic>Coumarins - chemistry</topic><topic>Covalence</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Exposure</topic><topic>gradient</topic><topic>grayscale lithography</topic><topic>Irradiation</topic><topic>Lithography</topic><topic>Masks</topic><topic>Microfluidics</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>photocleavable</topic><topic>self-assembled monolayer</topic><topic>soft lithography</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Surface properties</topic><topic>Surface Properties - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Audrey M.</creatorcontrib><creatorcontrib>Ritchey, Joshua A.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Small</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Audrey M.</au><au>Ritchey, Joshua A.</au><au>Moore, Jeffrey S.</au><au>Nuzzo, Ralph G.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</atitle><jtitle>Small</jtitle><addtitle>Small</addtitle><date>2011-12-02</date><risdate>2011</risdate><volume>7</volume><issue>23</issue><spage>3350</spage><epage>3362</epage><pages>3350-3362</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding. The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21997925</pmid><doi>10.1002/smll.201100920</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small, 2011-12, Vol.7 (23), p.3350-3362
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_907999246
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amplitudes
Coumarins - chemistry
Covalence
Dimethylpolysiloxanes - chemistry
Exposure
gradient
grayscale lithography
Irradiation
Lithography
Masks
Microfluidics
Nanotechnology
Nanotechnology - methods
photocleavable
self-assembled monolayer
soft lithography
solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)
Surface properties
Surface Properties - radiation effects
Ultraviolet Rays
Vacuum
title Programmable Chemical Gradient Patterns by Soft Grayscale Lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Chemical%20Gradient%20Patterns%20by%20Soft%20Grayscale%20Lithography&rft.jtitle=Small&rft.au=Bowen,%20Audrey%20M.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-12-02&rft.volume=7&rft.issue=23&rft.spage=3350&rft.epage=3362&rft.pages=3350-3362&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201100920&rft_dat=%3Cproquest_osti_%3E4180918111%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819120078&rft_id=info:pmid/21997925&rfr_iscdi=true