Programmable Chemical Gradient Patterns by Soft Grayscale Lithography
A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane em...
Gespeichert in:
Veröffentlicht in: | Small 2011-12, Vol.7 (23), p.3350-3362 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3362 |
---|---|
container_issue | 23 |
container_start_page | 3350 |
container_title | Small |
container_volume | 7 |
creator | Bowen, Audrey M. Ritchey, Joshua A. Moore, Jeffrey S. Nuzzo, Ralph G. |
description | A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding.
The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding. |
doi_str_mv | 10.1002/smll.201100920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_907999246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4180918111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EoqWwZYkiWMAmgx_xawmjdkBKoVIrsbQczw3jksfU9gjy73FIGSEWsLKte76ja30IPSd4RTCmb2PfdSuKSX5oih-gUyIIK4Wi-uHxTvAJehLjLcaM0Eo-RieUaC015afo_CqMX4Pte9t0UKx30Htnu2IT7NbDkIormxKEIRbNVFyPbZonU8wIFLVPuzm7301P0aPWdhGe3Z9n6Obi_Gb9oaw_bz6u39Wl43nBUvNGqKraVlK3krtWOUqIdVIqaBRRLeVSMgBhmQZlccuEVNIyRhlXecbO0MtFO8bkTXQ-gdu5cRjAJUOw4KqaodcLtA_j3QFiMr2PDrrODjAeotFYaq1pJTL55p8kUYwLoeUv6au_0NvxEIb810wRTSjGUmVqtVAujDEGaM0--N6GKS9n5rrMXJc51pUDL-61h6aH7RH_3U8G9AJ89x1M_9GZ68u6_lNeLlkfE_w4Zm34ZoRkkpsvnzZmrUT9nl9cGsF-Ar10rUs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819120078</pqid></control><display><type>article</type><title>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bowen, Audrey M. ; Ritchey, Joshua A. ; Moore, Jeffrey S. ; Nuzzo, Ralph G.</creator><creatorcontrib>Bowen, Audrey M. ; Ritchey, Joshua A. ; Moore, Jeffrey S. ; Nuzzo, Ralph G. ; Energy Frontier Research Centers (EFRC) ; Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding.
The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201100920</identifier><identifier>PMID: 21997925</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amplitudes ; Coumarins - chemistry ; Covalence ; Dimethylpolysiloxanes - chemistry ; Exposure ; gradient ; grayscale lithography ; Irradiation ; Lithography ; Masks ; Microfluidics ; Nanotechnology ; Nanotechnology - methods ; photocleavable ; self-assembled monolayer ; soft lithography ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Surface properties ; Surface Properties - radiation effects ; Ultraviolet Rays ; Vacuum</subject><ispartof>Small, 2011-12, Vol.7 (23), p.3350-3362</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</citedby><cites>FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201100920$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201100920$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21997925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1065847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowen, Audrey M.</creatorcontrib><creatorcontrib>Ritchey, Joshua A.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</title><title>Small</title><addtitle>Small</addtitle><description>A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding.
The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.</description><subject>Amplitudes</subject><subject>Coumarins - chemistry</subject><subject>Covalence</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Exposure</subject><subject>gradient</subject><subject>grayscale lithography</subject><subject>Irradiation</subject><subject>Lithography</subject><subject>Masks</subject><subject>Microfluidics</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>photocleavable</subject><subject>self-assembled monolayer</subject><subject>soft lithography</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Surface properties</subject><subject>Surface Properties - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>Vacuum</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi0EoqWwZYkiWMAmgx_xawmjdkBKoVIrsbQczw3jksfU9gjy73FIGSEWsLKte76ja30IPSd4RTCmb2PfdSuKSX5oih-gUyIIK4Wi-uHxTvAJehLjLcaM0Eo-RieUaC015afo_CqMX4Pte9t0UKx30Htnu2IT7NbDkIormxKEIRbNVFyPbZonU8wIFLVPuzm7301P0aPWdhGe3Z9n6Obi_Gb9oaw_bz6u39Wl43nBUvNGqKraVlK3krtWOUqIdVIqaBRRLeVSMgBhmQZlccuEVNIyRhlXecbO0MtFO8bkTXQ-gdu5cRjAJUOw4KqaodcLtA_j3QFiMr2PDrrODjAeotFYaq1pJTL55p8kUYwLoeUv6au_0NvxEIb810wRTSjGUmVqtVAujDEGaM0--N6GKS9n5rrMXJc51pUDL-61h6aH7RH_3U8G9AJ89x1M_9GZ68u6_lNeLlkfE_w4Zm34ZoRkkpsvnzZmrUT9nl9cGsF-Ar10rUs</recordid><startdate>20111202</startdate><enddate>20111202</enddate><creator>Bowen, Audrey M.</creator><creator>Ritchey, Joshua A.</creator><creator>Moore, Jeffrey S.</creator><creator>Nuzzo, Ralph G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20111202</creationdate><title>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</title><author>Bowen, Audrey M. ; Ritchey, Joshua A. ; Moore, Jeffrey S. ; Nuzzo, Ralph G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5100-95b6844d479f75cf8c211ac778eb818f25773ee6a39e8a0f36787a3323582573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitudes</topic><topic>Coumarins - chemistry</topic><topic>Covalence</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Exposure</topic><topic>gradient</topic><topic>grayscale lithography</topic><topic>Irradiation</topic><topic>Lithography</topic><topic>Masks</topic><topic>Microfluidics</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>photocleavable</topic><topic>self-assembled monolayer</topic><topic>soft lithography</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Surface properties</topic><topic>Surface Properties - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Audrey M.</creatorcontrib><creatorcontrib>Ritchey, Joshua A.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Small</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Audrey M.</au><au>Ritchey, Joshua A.</au><au>Moore, Jeffrey S.</au><au>Nuzzo, Ralph G.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Chemical Gradient Patterns by Soft Grayscale Lithography</atitle><jtitle>Small</jtitle><addtitle>Small</addtitle><date>2011-12-02</date><risdate>2011</risdate><volume>7</volume><issue>23</issue><spage>3350</spage><epage>3362</epage><pages>3350-3362</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A method for fabricating chemical gradients on planar and nonplanar substrates using grayscale lithography is reported. Compliant grayscale amplitude masks are fabricated using a vacuum‐assisted microfluidic filling protocol that employs dilutions of a carbon‐black‐containing polydimethylsiloxane emulsion (bPDMS) within traditional clear PDMS (cPDMS) to create planar, fully self‐supporting mask elements. The mask is then placed over a surface functionalized with a hydrophobic coumarin‐based photocleavable monolayer, which exposes a polar group upon irradiation. The mask serves to modulate the intensity of incident UV light, thereby controlling the density of molecules cleaved. The resulting molecular‐level grayscale patterns are characterized by condensation microscopy and imaging mode time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Due to the inherent flexibility of this technique, the photofuse as well as the gradient patterns can be designed for a wide range of applications; in this paper two proof‐of‐concept demonstrations are shown. The first utilizes the ability to control the resulting contact angle of the surface for the fabrication of a passive pressure‐sensitive microfluidic gating system. The second is a model surface modification process that utilizes the functional groups deprotected during the photocleavage to pattern the deposition of moieties with complementary chemistry. The spatial layout, resolution, and concentration of these covalently linked molecules follow the gradient pattern created by the grayscale mask during exposure. The programmable chemical gradient fabrication scheme presented in this work allows explicit engineering of both surface properties that dictate nonspecific interactions (surface energy, charge, etc.) and functional chemistry necessary for covalent bonding.
The fabrication of programmable molecular‐level grayscale patterns on planar and nonplanar substrates is demonstrated using poly(dimethyl siloxane)‐based compliant grayscale amplitude masks (in figure) and a hydrophobic coumarin‐based photocleavable monolayer that exposes a polar group upon irradiation. This chemical gradient fabrication scheme enables explicit engineering of both surface properties that dictate nonspecific interactions and functional chemistry necessary for covalent bonding.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21997925</pmid><doi>10.1002/smll.201100920</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small, 2011-12, Vol.7 (23), p.3350-3362 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_907999246 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amplitudes Coumarins - chemistry Covalence Dimethylpolysiloxanes - chemistry Exposure gradient grayscale lithography Irradiation Lithography Masks Microfluidics Nanotechnology Nanotechnology - methods photocleavable self-assembled monolayer soft lithography solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) Surface properties Surface Properties - radiation effects Ultraviolet Rays Vacuum |
title | Programmable Chemical Gradient Patterns by Soft Grayscale Lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Chemical%20Gradient%20Patterns%20by%20Soft%20Grayscale%20Lithography&rft.jtitle=Small&rft.au=Bowen,%20Audrey%20M.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-12-02&rft.volume=7&rft.issue=23&rft.spage=3350&rft.epage=3362&rft.pages=3350-3362&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201100920&rft_dat=%3Cproquest_osti_%3E4180918111%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819120078&rft_id=info:pmid/21997925&rfr_iscdi=true |