Multimodal Biometric Score Fusion Using Gaussian Mixture Model and Monte Carlo Method
Multimodal biometric fusion is gaining more attention among researchers in recent days. As multimodal biometric system consolidates the information from multiple biometric sources, the effective fusion of information obtained at score level is a challenging task. In this paper, we propose a framewor...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2010-07, Vol.25 (4), p.771-782 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 4 |
container_start_page | 771 |
container_title | Journal of computer science and technology |
container_volume | 25 |
creator | Raghavendra, R Ashok, Rao Hemantha Kumar, G |
description | Multimodal biometric fusion is gaining more attention among researchers in recent days. As multimodal biometric system consolidates the information from multiple biometric sources, the effective fusion of information obtained at score level is a challenging task. In this paper, we propose a framework for optimal fusion of match scores based on Gaussian Mixture Mode] (GMM) and Monte Carlo sampling based hypothesis testing. The proposed fusion approach has the ability to handle: 1) small size of match scores as is more commonly encountered in biometric fusion, and 2) arbitrary distribution of match scores which is more pronounced when discrete scores and multimodal features are present. The proposed fusion scheme is compared with well established schemes such as Likelihood Ratio (LR) method and weighted SUM rule. Extensive experiments carried out on five different multimodal biometric databases indicate that the proposed fusion scheme achieves higher performance as compared with other contemporary state of art fusion techniques. |
doi_str_mv | 10.1007/s11390-010-9364-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907990757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34470253</cqvip_id><sourcerecordid>2376505731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-e45ff44f6f4ea64c44a9572ad59059a595e89e9554dcb4bcff8bcb4999a54f183</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaKgVn-At-DF0-qkO2k2Ry1-QYsH7Tmk2aRGt4lNdkH_vSkVBA8eZubB-2B4hJwxuGQA4iozVkuogEEl6wlWYo8csWYCFQqU-wUDFKasQ3Kc8xtALQDxiCzmQ9f7dWx1R298XNs-eUOfTUyW3g3Zx0AX2YcVvddDzl4HOvef_VDYeWxtR3VoCwq9pVOdukjntn-N7Qk5cLrL9vTnjsji7vZl-lDNnu4fp9ezyiATfWWRO4foJg6tnqBB1JKLsW65BC41l9w20krOsTVLXBrnmmUBUhYOHWvqEbnY5X6kuBls7tXaZ2O7Tgcbh6wkCFmGi6I8_6N8i0MK5TnViDFIbEqBI8J2IpNizsk69ZH8WqcvxUBta1a7mlWpWW1rVtvg8c6TizasbPoN_s_08415jWG1KT611Obd-c6qGlHAmNf1N22airE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872094811</pqid></control><display><type>article</type><title>Multimodal Biometric Score Fusion Using Gaussian Mixture Model and Monte Carlo Method</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Raghavendra, R ; Ashok, Rao ; Hemantha Kumar, G</creator><creatorcontrib>Raghavendra, R ; Ashok, Rao ; Hemantha Kumar, G</creatorcontrib><description>Multimodal biometric fusion is gaining more attention among researchers in recent days. As multimodal biometric system consolidates the information from multiple biometric sources, the effective fusion of information obtained at score level is a challenging task. In this paper, we propose a framework for optimal fusion of match scores based on Gaussian Mixture Mode] (GMM) and Monte Carlo sampling based hypothesis testing. The proposed fusion approach has the ability to handle: 1) small size of match scores as is more commonly encountered in biometric fusion, and 2) arbitrary distribution of match scores which is more pronounced when discrete scores and multimodal features are present. The proposed fusion scheme is compared with well established schemes such as Likelihood Ratio (LR) method and weighted SUM rule. Extensive experiments carried out on five different multimodal biometric databases indicate that the proposed fusion scheme achieves higher performance as compared with other contemporary state of art fusion techniques.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-010-9364-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Biometrics ; Computer Science ; Computer simulation ; Data Structures and Information Theory ; Experiments ; Gaussian ; Hypotheses ; Hypothesis testing ; Information Systems Applications (incl.Internet) ; Likelihood ratio ; Mathematical models ; Mixtures ; Monte Carlo methods ; Monte Carlo simulation ; Probabilistic models ; Regular Paper ; Sampling ; Sensors ; Software Engineering ; Statistics ; Sum rules ; Tasks ; Theory of Computation ; 多模态 ; 特征融合 ; 生物来源 ; 生物识别系统 ; 蒙特卡罗方法 ; 高斯混合模型 ; 高斯混合模式</subject><ispartof>Journal of computer science and technology, 2010-07, Vol.25 (4), p.771-782</ispartof><rights>Springer 2010</rights><rights>Springer 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-e45ff44f6f4ea64c44a9572ad59059a595e89e9554dcb4bcff8bcb4999a54f183</citedby><cites>FETCH-LOGICAL-c417t-e45ff44f6f4ea64c44a9572ad59059a595e89e9554dcb4bcff8bcb4999a54f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85226X/85226X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-010-9364-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-010-9364-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Raghavendra, R</creatorcontrib><creatorcontrib>Ashok, Rao</creatorcontrib><creatorcontrib>Hemantha Kumar, G</creatorcontrib><title>Multimodal Biometric Score Fusion Using Gaussian Mixture Model and Monte Carlo Method</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><addtitle>Journal of Computer Science and Technology</addtitle><description>Multimodal biometric fusion is gaining more attention among researchers in recent days. As multimodal biometric system consolidates the information from multiple biometric sources, the effective fusion of information obtained at score level is a challenging task. In this paper, we propose a framework for optimal fusion of match scores based on Gaussian Mixture Mode] (GMM) and Monte Carlo sampling based hypothesis testing. The proposed fusion approach has the ability to handle: 1) small size of match scores as is more commonly encountered in biometric fusion, and 2) arbitrary distribution of match scores which is more pronounced when discrete scores and multimodal features are present. The proposed fusion scheme is compared with well established schemes such as Likelihood Ratio (LR) method and weighted SUM rule. Extensive experiments carried out on five different multimodal biometric databases indicate that the proposed fusion scheme achieves higher performance as compared with other contemporary state of art fusion techniques.</description><subject>Artificial Intelligence</subject><subject>Biometrics</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Data Structures and Information Theory</subject><subject>Experiments</subject><subject>Gaussian</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Likelihood ratio</subject><subject>Mathematical models</subject><subject>Mixtures</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Probabilistic models</subject><subject>Regular Paper</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Software Engineering</subject><subject>Statistics</subject><subject>Sum rules</subject><subject>Tasks</subject><subject>Theory of Computation</subject><subject>多模态</subject><subject>特征融合</subject><subject>生物来源</subject><subject>生物识别系统</subject><subject>蒙特卡罗方法</subject><subject>高斯混合模型</subject><subject>高斯混合模式</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaKgVn-At-DF0-qkO2k2Ry1-QYsH7Tmk2aRGt4lNdkH_vSkVBA8eZubB-2B4hJwxuGQA4iozVkuogEEl6wlWYo8csWYCFQqU-wUDFKasQ3Kc8xtALQDxiCzmQ9f7dWx1R298XNs-eUOfTUyW3g3Zx0AX2YcVvddDzl4HOvef_VDYeWxtR3VoCwq9pVOdukjntn-N7Qk5cLrL9vTnjsji7vZl-lDNnu4fp9ezyiATfWWRO4foJg6tnqBB1JKLsW65BC41l9w20krOsTVLXBrnmmUBUhYOHWvqEbnY5X6kuBls7tXaZ2O7Tgcbh6wkCFmGi6I8_6N8i0MK5TnViDFIbEqBI8J2IpNizsk69ZH8WqcvxUBta1a7mlWpWW1rVtvg8c6TizasbPoN_s_08415jWG1KT611Obd-c6qGlHAmNf1N22airE</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Raghavendra, R</creator><creator>Ashok, Rao</creator><creator>Hemantha Kumar, G</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100701</creationdate><title>Multimodal Biometric Score Fusion Using Gaussian Mixture Model and Monte Carlo Method</title><author>Raghavendra, R ; Ashok, Rao ; Hemantha Kumar, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-e45ff44f6f4ea64c44a9572ad59059a595e89e9554dcb4bcff8bcb4999a54f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Biometrics</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Data Structures and Information Theory</topic><topic>Experiments</topic><topic>Gaussian</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Likelihood ratio</topic><topic>Mathematical models</topic><topic>Mixtures</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Probabilistic models</topic><topic>Regular Paper</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Software Engineering</topic><topic>Statistics</topic><topic>Sum rules</topic><topic>Tasks</topic><topic>Theory of Computation</topic><topic>多模态</topic><topic>特征融合</topic><topic>生物来源</topic><topic>生物识别系统</topic><topic>蒙特卡罗方法</topic><topic>高斯混合模型</topic><topic>高斯混合模式</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavendra, R</creatorcontrib><creatorcontrib>Ashok, Rao</creatorcontrib><creatorcontrib>Hemantha Kumar, G</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghavendra, R</au><au>Ashok, Rao</au><au>Hemantha Kumar, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Biometric Score Fusion Using Gaussian Mixture Model and Monte Carlo Method</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><addtitle>Journal of Computer Science and Technology</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>25</volume><issue>4</issue><spage>771</spage><epage>782</epage><pages>771-782</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Multimodal biometric fusion is gaining more attention among researchers in recent days. As multimodal biometric system consolidates the information from multiple biometric sources, the effective fusion of information obtained at score level is a challenging task. In this paper, we propose a framework for optimal fusion of match scores based on Gaussian Mixture Mode] (GMM) and Monte Carlo sampling based hypothesis testing. The proposed fusion approach has the ability to handle: 1) small size of match scores as is more commonly encountered in biometric fusion, and 2) arbitrary distribution of match scores which is more pronounced when discrete scores and multimodal features are present. The proposed fusion scheme is compared with well established schemes such as Likelihood Ratio (LR) method and weighted SUM rule. Extensive experiments carried out on five different multimodal biometric databases indicate that the proposed fusion scheme achieves higher performance as compared with other contemporary state of art fusion techniques.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-010-9364-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2010-07, Vol.25 (4), p.771-782 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_proquest_miscellaneous_907990757 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Artificial Intelligence Biometrics Computer Science Computer simulation Data Structures and Information Theory Experiments Gaussian Hypotheses Hypothesis testing Information Systems Applications (incl.Internet) Likelihood ratio Mathematical models Mixtures Monte Carlo methods Monte Carlo simulation Probabilistic models Regular Paper Sampling Sensors Software Engineering Statistics Sum rules Tasks Theory of Computation 多模态 特征融合 生物来源 生物识别系统 蒙特卡罗方法 高斯混合模型 高斯混合模式 |
title | Multimodal Biometric Score Fusion Using Gaussian Mixture Model and Monte Carlo Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Biometric%20Score%20Fusion%20Using%20Gaussian%20Mixture%20Model%20and%20Monte%20Carlo%20Method&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Raghavendra,%20R&rft.date=2010-07-01&rft.volume=25&rft.issue=4&rft.spage=771&rft.epage=782&rft.pages=771-782&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-010-9364-7&rft_dat=%3Cproquest_cross%3E2376505731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872094811&rft_id=info:pmid/&rft_cqvip_id=34470253&rfr_iscdi=true |