Perfect sampling for the wavelet reconstruction of signals

The coupling from the past (CFTP) procedure is a protocol for finite-state Markov chain Monte Carlo (MCMC) methods whereby the algorithm itself can determine the necessary runtime to convergence. In this paper, we demonstrate how this protocol can be applied to the problem of signal reconstruction u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2002-02, Vol.50 (2), p.337-344
Hauptverfasser: Holmes, C., Denison, D.G.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 2
container_start_page 337
container_title IEEE transactions on signal processing
container_volume 50
creator Holmes, C.
Denison, D.G.T.
description The coupling from the past (CFTP) procedure is a protocol for finite-state Markov chain Monte Carlo (MCMC) methods whereby the algorithm itself can determine the necessary runtime to convergence. In this paper, we demonstrate how this protocol can be applied to the problem of signal reconstruction using Bayesian wavelet analysis where the dimensionality of the wavelet basis set is unknown, and the observations are distorted by Gaussian white noise of unknown variance. MCMC simulation is used to account for model uncertainty by drawing samples of wavelet bases for approximating integrals (or summations) on the model space that are either too complex or too computationally demanding to perform analytically. We extend the CFTP protocol by making use of the central limit theorem to show how the algorithm can also monitor its own approximation error induced by MCMC. In this way, we can assess the number of MCMC samples needed to approximate the integral to within a user specified tolerance level. Hence, the method automatically ensures convergence and determines the necessary number of iterations needed to meet the error criteria.
doi_str_mv 10.1109/78.978388
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907986078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>978388</ieee_id><sourcerecordid>28525054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-80eda41a5db363a216867b9874f5b302c98b00cfb8995389f51febaac734ed0a3</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFKzVg1dPwYPiIXU3-zXrTYpfUNCDgrew2c7WlDSpu4nivzclxYMHPb0D8zAwvIQcMzphjJpLDROjgQPskBEzgqVUaLXbz1TyVIJ-3ScHMS4pZUIYNSJXTxg8ujaJdrWuynqR-CYk7Rsmn_YDK2yTgK6pYxs615ZNnTQ-ieWitlU8JHu-Dzza5pi83N48T-_T2ePdw_R6ljqudJsCxbkVzMp5wRW3GVOgdGFACy8LTjNnoKDU-QKMkRyMl8xjYa3TXOCcWj4m58PddWjeO4xtviqjw6qyNTZdzA3VBhTtvx6Tsz9lBjKTVIr_oVaCc8N6ePoLLpsubL7PAQQHpcQGXQzIhSbGgD5fh3Jlw1fOaL5pJdeQD6309mSwJSL-uO3yG7bYhhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884386641</pqid></control><display><type>article</type><title>Perfect sampling for the wavelet reconstruction of signals</title><source>IEEE Electronic Library (IEL)</source><creator>Holmes, C. ; Denison, D.G.T.</creator><creatorcontrib>Holmes, C. ; Denison, D.G.T.</creatorcontrib><description>The coupling from the past (CFTP) procedure is a protocol for finite-state Markov chain Monte Carlo (MCMC) methods whereby the algorithm itself can determine the necessary runtime to convergence. In this paper, we demonstrate how this protocol can be applied to the problem of signal reconstruction using Bayesian wavelet analysis where the dimensionality of the wavelet basis set is unknown, and the observations are distorted by Gaussian white noise of unknown variance. MCMC simulation is used to account for model uncertainty by drawing samples of wavelet bases for approximating integrals (or summations) on the model space that are either too complex or too computationally demanding to perform analytically. We extend the CFTP protocol by making use of the central limit theorem to show how the algorithm can also monitor its own approximation error induced by MCMC. In this way, we can assess the number of MCMC samples needed to approximate the integral to within a user specified tolerance level. Hence, the method automatically ensures convergence and determines the necessary number of iterations needed to meet the error criteria.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.978388</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analysis of variance ; Approximation ; Bayesian methods ; Convergence ; Errors ; Integrals ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Probability ; Protocols ; Runtime ; Sampling methods ; Signal analysis ; Signal reconstruction ; Studies ; Wavelet ; Wavelet analysis</subject><ispartof>IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.337-344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-80eda41a5db363a216867b9874f5b302c98b00cfb8995389f51febaac734ed0a3</citedby><cites>FETCH-LOGICAL-c367t-80eda41a5db363a216867b9874f5b302c98b00cfb8995389f51febaac734ed0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/978388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/978388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holmes, C.</creatorcontrib><creatorcontrib>Denison, D.G.T.</creatorcontrib><title>Perfect sampling for the wavelet reconstruction of signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The coupling from the past (CFTP) procedure is a protocol for finite-state Markov chain Monte Carlo (MCMC) methods whereby the algorithm itself can determine the necessary runtime to convergence. In this paper, we demonstrate how this protocol can be applied to the problem of signal reconstruction using Bayesian wavelet analysis where the dimensionality of the wavelet basis set is unknown, and the observations are distorted by Gaussian white noise of unknown variance. MCMC simulation is used to account for model uncertainty by drawing samples of wavelet bases for approximating integrals (or summations) on the model space that are either too complex or too computationally demanding to perform analytically. We extend the CFTP protocol by making use of the central limit theorem to show how the algorithm can also monitor its own approximation error induced by MCMC. In this way, we can assess the number of MCMC samples needed to approximate the integral to within a user specified tolerance level. Hence, the method automatically ensures convergence and determines the necessary number of iterations needed to meet the error criteria.</description><subject>Algorithms</subject><subject>Analysis of variance</subject><subject>Approximation</subject><subject>Bayesian methods</subject><subject>Convergence</subject><subject>Errors</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Probability</subject><subject>Protocols</subject><subject>Runtime</subject><subject>Sampling methods</subject><subject>Signal analysis</subject><subject>Signal reconstruction</subject><subject>Studies</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1Lw0AQBuBFFKzVg1dPwYPiIXU3-zXrTYpfUNCDgrew2c7WlDSpu4nivzclxYMHPb0D8zAwvIQcMzphjJpLDROjgQPskBEzgqVUaLXbz1TyVIJ-3ScHMS4pZUIYNSJXTxg8ujaJdrWuynqR-CYk7Rsmn_YDK2yTgK6pYxs615ZNnTQ-ieWitlU8JHu-Dzza5pi83N48T-_T2ePdw_R6ljqudJsCxbkVzMp5wRW3GVOgdGFACy8LTjNnoKDU-QKMkRyMl8xjYa3TXOCcWj4m58PddWjeO4xtviqjw6qyNTZdzA3VBhTtvx6Tsz9lBjKTVIr_oVaCc8N6ePoLLpsubL7PAQQHpcQGXQzIhSbGgD5fh3Jlw1fOaL5pJdeQD6309mSwJSL-uO3yG7bYhhc</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Holmes, C.</creator><creator>Denison, D.G.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020201</creationdate><title>Perfect sampling for the wavelet reconstruction of signals</title><author>Holmes, C. ; Denison, D.G.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-80eda41a5db363a216867b9874f5b302c98b00cfb8995389f51febaac734ed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Analysis of variance</topic><topic>Approximation</topic><topic>Bayesian methods</topic><topic>Convergence</topic><topic>Errors</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Probability</topic><topic>Protocols</topic><topic>Runtime</topic><topic>Sampling methods</topic><topic>Signal analysis</topic><topic>Signal reconstruction</topic><topic>Studies</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, C.</creatorcontrib><creatorcontrib>Denison, D.G.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holmes, C.</au><au>Denison, D.G.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perfect sampling for the wavelet reconstruction of signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2002-02-01</date><risdate>2002</risdate><volume>50</volume><issue>2</issue><spage>337</spage><epage>344</epage><pages>337-344</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The coupling from the past (CFTP) procedure is a protocol for finite-state Markov chain Monte Carlo (MCMC) methods whereby the algorithm itself can determine the necessary runtime to convergence. In this paper, we demonstrate how this protocol can be applied to the problem of signal reconstruction using Bayesian wavelet analysis where the dimensionality of the wavelet basis set is unknown, and the observations are distorted by Gaussian white noise of unknown variance. MCMC simulation is used to account for model uncertainty by drawing samples of wavelet bases for approximating integrals (or summations) on the model space that are either too complex or too computationally demanding to perform analytically. We extend the CFTP protocol by making use of the central limit theorem to show how the algorithm can also monitor its own approximation error induced by MCMC. In this way, we can assess the number of MCMC samples needed to approximate the integral to within a user specified tolerance level. Hence, the method automatically ensures convergence and determines the necessary number of iterations needed to meet the error criteria.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/78.978388</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.337-344
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_907986078
source IEEE Electronic Library (IEL)
subjects Algorithms
Analysis of variance
Approximation
Bayesian methods
Convergence
Errors
Integrals
Mathematical analysis
Mathematical models
Monte Carlo methods
Probability
Protocols
Runtime
Sampling methods
Signal analysis
Signal reconstruction
Studies
Wavelet
Wavelet analysis
title Perfect sampling for the wavelet reconstruction of signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perfect%20sampling%20for%20the%20wavelet%20reconstruction%20of%20signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Holmes,%20C.&rft.date=2002-02-01&rft.volume=50&rft.issue=2&rft.spage=337&rft.epage=344&rft.pages=337-344&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.978388&rft_dat=%3Cproquest_RIE%3E28525054%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884386641&rft_id=info:pmid/&rft_ieee_id=978388&rfr_iscdi=true