Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation
► Aluminium reinforced with ex situ nano-SiC by powder metallurgy technology. ► Nature of the SiC nanoparticles and high-energy mixing methods are investigated. ► Effective nanoparticle dispersion estimated, using matrix crystallite size. ► 10 vol.% of SiC nanoparticles effectively mixed in aluminiu...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011, Vol.528 (21), p.6606-6615 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6615 |
---|---|
container_issue | 21 |
container_start_page | 6606 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 528 |
creator | Kollo, L. Bradbury, C.R. Veinthal, R. Jäggi, C. Carreño-Morelli, E. Leparoux, M. |
description | ► Aluminium reinforced with
ex situ nano-SiC by powder metallurgy technology. ► Nature of the SiC nanoparticles and high-energy mixing methods are investigated. ► Effective nanoparticle dispersion estimated, using matrix crystallite size. ► 10
vol.% of SiC nanoparticles effectively mixed in aluminium for tensile response.
High-energy milling was studied for the
ex situ strengthening of aluminium with silicon carbide (SiC) nanopowders. Heptane was used as a milling agent for both planetary- and attritor ball milling. Considering the different milling techniques and the differences in the resulting powders, effective dispersion of the nano SiC was achieved. Composite samples compacted by hot pressing showed an increase in hardness (HV
20
=
220) and a decrease in Al crystallite size from 220 to 55
nm with the nano-SiC content increasing from 1 up to 20
vol.%. The ultimate tensile strength was measured for extruded samples which resulted in 205
MPa (17% elongation) for 1
vol.% of nano-SiC and a strength of 420
MPa (4% elongation) for 10
vol.% of nano-SiC reinforcement. The mechanical properties were compared with what was predicted by the Hall–Petch relationship. |
doi_str_mv | 10.1016/j.msea.2011.05.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907985923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311005867</els_id><sourcerecordid>907985923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-be336dbbe647bc685d3507b3a7fdf0aa4d36a51f65b9bda1cc60a13385c6a7913</originalsourceid><addsrcrecordid>eNqNkU2r1DAUQIsoOD79A66yEd203jRN2oIbefgFD93oOtx8dOYOafJMWmH-vS3zcPlwFQjnnlxyquo1h4YDV-_PzVw8Ni1w3oBsQPRPqgMfelF3o1BPqwOMLa8ljOJ59aKUMwDwDuSh0t8xprpQIJsis5gNOc-ypzilbL1jGNaZIq0zu8_JrfuVubATHU-1jz4fL2ymECgeGUbHTmlhm6ikQA4XSvFl9WzCUPyrh_Om-vX508_br_Xdjy_fbj_e1bZr-6U2XgjljPGq641Vg3RCQm8E9pObALFzQqHkk5JmNA65tQqQCzFIq7Afubip3l6925a_V18WPVOxPgSMPq1Fj9CPgxxb8V9kp9SwO989SnK1-4Tq2g1tr6jNqZTsJ32facZ80Rz0Xkif9V5I74U0SL0V2obePPixWAxTxmip_JtsO8E5DPvGH66c3z7wD_msiyUftxSUvV20S_TYM38B-hWnvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692333642</pqid></control><display><type>article</type><title>Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kollo, L. ; Bradbury, C.R. ; Veinthal, R. ; Jäggi, C. ; Carreño-Morelli, E. ; Leparoux, M.</creator><creatorcontrib>Kollo, L. ; Bradbury, C.R. ; Veinthal, R. ; Jäggi, C. ; Carreño-Morelli, E. ; Leparoux, M.</creatorcontrib><description>► Aluminium reinforced with
ex situ nano-SiC by powder metallurgy technology. ► Nature of the SiC nanoparticles and high-energy mixing methods are investigated. ► Effective nanoparticle dispersion estimated, using matrix crystallite size. ► 10
vol.% of SiC nanoparticles effectively mixed in aluminium for tensile response.
High-energy milling was studied for the
ex situ strengthening of aluminium with silicon carbide (SiC) nanopowders. Heptane was used as a milling agent for both planetary- and attritor ball milling. Considering the different milling techniques and the differences in the resulting powders, effective dispersion of the nano SiC was achieved. Composite samples compacted by hot pressing showed an increase in hardness (HV
20
=
220) and a decrease in Al crystallite size from 220 to 55
nm with the nano-SiC content increasing from 1 up to 20
vol.%. The ultimate tensile strength was measured for extruded samples which resulted in 205
MPa (17% elongation) for 1
vol.% of nano-SiC and a strength of 420
MPa (4% elongation) for 10
vol.% of nano-SiC reinforcement. The mechanical properties were compared with what was predicted by the Hall–Petch relationship.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.05.037</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aluminium ; Aluminum ; Applied sciences ; Dispersion hardening metals ; Elongation ; Exact sciences and technology ; Hardness ; Mechanical alloying ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metal matrix composites ; Metals. Metallurgy ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructured materials ; Powder metallurgy ; Powder metallurgy. Composite materials ; Production techniques ; Silicon carbide</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011, Vol.528 (21), p.6606-6615</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-be336dbbe647bc685d3507b3a7fdf0aa4d36a51f65b9bda1cc60a13385c6a7913</citedby><cites>FETCH-LOGICAL-c427t-be336dbbe647bc685d3507b3a7fdf0aa4d36a51f65b9bda1cc60a13385c6a7913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2011.05.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27910,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24311083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kollo, L.</creatorcontrib><creatorcontrib>Bradbury, C.R.</creatorcontrib><creatorcontrib>Veinthal, R.</creatorcontrib><creatorcontrib>Jäggi, C.</creatorcontrib><creatorcontrib>Carreño-Morelli, E.</creatorcontrib><creatorcontrib>Leparoux, M.</creatorcontrib><title>Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>► Aluminium reinforced with
ex situ nano-SiC by powder metallurgy technology. ► Nature of the SiC nanoparticles and high-energy mixing methods are investigated. ► Effective nanoparticle dispersion estimated, using matrix crystallite size. ► 10
vol.% of SiC nanoparticles effectively mixed in aluminium for tensile response.
High-energy milling was studied for the
ex situ strengthening of aluminium with silicon carbide (SiC) nanopowders. Heptane was used as a milling agent for both planetary- and attritor ball milling. Considering the different milling techniques and the differences in the resulting powders, effective dispersion of the nano SiC was achieved. Composite samples compacted by hot pressing showed an increase in hardness (HV
20
=
220) and a decrease in Al crystallite size from 220 to 55
nm with the nano-SiC content increasing from 1 up to 20
vol.%. The ultimate tensile strength was measured for extruded samples which resulted in 205
MPa (17% elongation) for 1
vol.% of nano-SiC and a strength of 420
MPa (4% elongation) for 10
vol.% of nano-SiC reinforcement. The mechanical properties were compared with what was predicted by the Hall–Petch relationship.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Dispersion hardening metals</subject><subject>Elongation</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metal matrix composites</subject><subject>Metals. Metallurgy</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Powder metallurgy</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Silicon carbide</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU2r1DAUQIsoOD79A66yEd203jRN2oIbefgFD93oOtx8dOYOafJMWmH-vS3zcPlwFQjnnlxyquo1h4YDV-_PzVw8Ni1w3oBsQPRPqgMfelF3o1BPqwOMLa8ljOJ59aKUMwDwDuSh0t8xprpQIJsis5gNOc-ypzilbL1jGNaZIq0zu8_JrfuVubATHU-1jz4fL2ymECgeGUbHTmlhm6ikQA4XSvFl9WzCUPyrh_Om-vX508_br_Xdjy_fbj_e1bZr-6U2XgjljPGq641Vg3RCQm8E9pObALFzQqHkk5JmNA65tQqQCzFIq7Afubip3l6925a_V18WPVOxPgSMPq1Fj9CPgxxb8V9kp9SwO989SnK1-4Tq2g1tr6jNqZTsJ32facZ80Rz0Xkif9V5I74U0SL0V2obePPixWAxTxmip_JtsO8E5DPvGH66c3z7wD_msiyUftxSUvV20S_TYM38B-hWnvA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kollo, L.</creator><creator>Bradbury, C.R.</creator><creator>Veinthal, R.</creator><creator>Jäggi, C.</creator><creator>Carreño-Morelli, E.</creator><creator>Leparoux, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2011</creationdate><title>Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation</title><author>Kollo, L. ; Bradbury, C.R. ; Veinthal, R. ; Jäggi, C. ; Carreño-Morelli, E. ; Leparoux, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-be336dbbe647bc685d3507b3a7fdf0aa4d36a51f65b9bda1cc60a13385c6a7913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Dispersion hardening metals</topic><topic>Elongation</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metal matrix composites</topic><topic>Metals. Metallurgy</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Powder metallurgy</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollo, L.</creatorcontrib><creatorcontrib>Bradbury, C.R.</creatorcontrib><creatorcontrib>Veinthal, R.</creatorcontrib><creatorcontrib>Jäggi, C.</creatorcontrib><creatorcontrib>Carreño-Morelli, E.</creatorcontrib><creatorcontrib>Leparoux, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollo, L.</au><au>Bradbury, C.R.</au><au>Veinthal, R.</au><au>Jäggi, C.</au><au>Carreño-Morelli, E.</au><au>Leparoux, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011</date><risdate>2011</risdate><volume>528</volume><issue>21</issue><spage>6606</spage><epage>6615</epage><pages>6606-6615</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► Aluminium reinforced with
ex situ nano-SiC by powder metallurgy technology. ► Nature of the SiC nanoparticles and high-energy mixing methods are investigated. ► Effective nanoparticle dispersion estimated, using matrix crystallite size. ► 10
vol.% of SiC nanoparticles effectively mixed in aluminium for tensile response.
High-energy milling was studied for the
ex situ strengthening of aluminium with silicon carbide (SiC) nanopowders. Heptane was used as a milling agent for both planetary- and attritor ball milling. Considering the different milling techniques and the differences in the resulting powders, effective dispersion of the nano SiC was achieved. Composite samples compacted by hot pressing showed an increase in hardness (HV
20
=
220) and a decrease in Al crystallite size from 220 to 55
nm with the nano-SiC content increasing from 1 up to 20
vol.%. The ultimate tensile strength was measured for extruded samples which resulted in 205
MPa (17% elongation) for 1
vol.% of nano-SiC and a strength of 420
MPa (4% elongation) for 10
vol.% of nano-SiC reinforcement. The mechanical properties were compared with what was predicted by the Hall–Petch relationship.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.05.037</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011, Vol.528 (21), p.6606-6615 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_907985923 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aluminium Aluminum Applied sciences Dispersion hardening metals Elongation Exact sciences and technology Hardness Mechanical alloying Mechanical properties Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metal matrix composites Metals. Metallurgy Nanocomposites Nanomaterials Nanostructure Nanostructured materials Powder metallurgy Powder metallurgy. Composite materials Production techniques Silicon carbide |
title | Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-silicon%20carbide%20reinforced%20aluminium%20produced%20by%20high-energy%20milling%20and%20hot%20consolidation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Kollo,%20L.&rft.date=2011&rft.volume=528&rft.issue=21&rft.spage=6606&rft.epage=6615&rft.pages=6606-6615&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.05.037&rft_dat=%3Cproquest_cross%3E907985923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692333642&rft_id=info:pmid/&rft_els_id=S0921509311005867&rfr_iscdi=true |