Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema

To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2011-06, Vol.62 (3-4), p.467-500
Hauptverfasser: Kobayashi, Yuichi, Hosoe, Shigeyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 3-4
container_start_page 467
container_title Journal of intelligent & robotic systems
container_volume 62
creator Kobayashi, Yuichi
Hosoe, Shigeyuki
description To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.
doi_str_mv 10.1007/s10846-010-9465-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907985036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907985036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs7pB_AWvHiKvrRpmnjTsU1horDhNWTt66x0zUw63L69mVMEwVPe4fd_vPwJOedwxQHy68BBCcmAA9NCZgwOSI9necpAgD4kPdAJZ5BoeUxOQngDAK0y3SPuubFtW7cLNl3ZAun0ta46-ui62rV0jC16uxtv6Iv1tZ03yMKX-xY_aTpzH9aXdNTgpo6KDjcdtmFHXEXvXLml0-IVl_aUHFW2CXj2_fbJbDScDe7Z5Gn8MLidsELwtGM64wKUxKIqVZLnNpcll6Dm80oqgVmOaToXSkmOlmspUVhdpZnGpKhSUSZpn1zu1668e19j6MyyDgU28Vx062A05PH_kMooL_7IN7f2bbzNKCkUh0TxiPgeFd6F4LEyK18vrd8aDmbXv9n3b2L_Zte_gZhJ9pkQbbtA_7v4_9Ank2-H1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864810281</pqid></control><display><type>article</type><title>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</title><source>SpringerNature Journals</source><creator>Kobayashi, Yuichi ; Hosoe, Shigeyuki</creator><creatorcontrib>Kobayashi, Yuichi ; Hosoe, Shigeyuki</creatorcontrib><description>To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-010-9465-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Control ; Dynamical systems ; Electrical Engineering ; Engineering ; Flexibility ; Learning ; Mechanical Engineering ; Mechatronics ; Robotics ; Robots ; Synchronous ; Tasks</subject><ispartof>Journal of intelligent &amp; robotic systems, 2011-06, Vol.62 (3-4), p.467-500</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</citedby><cites>FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-010-9465-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-010-9465-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kobayashi, Yuichi</creatorcontrib><creatorcontrib>Hosoe, Shigeyuki</creatorcontrib><title>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Dynamical systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Flexibility</subject><subject>Learning</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Synchronous</subject><subject>Tasks</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10EFLwzAUB_AgCs7pB_AWvHiKvrRpmnjTsU1horDhNWTt66x0zUw63L69mVMEwVPe4fd_vPwJOedwxQHy68BBCcmAA9NCZgwOSI9necpAgD4kPdAJZ5BoeUxOQngDAK0y3SPuubFtW7cLNl3ZAun0ta46-ui62rV0jC16uxtv6Iv1tZ03yMKX-xY_aTpzH9aXdNTgpo6KDjcdtmFHXEXvXLml0-IVl_aUHFW2CXj2_fbJbDScDe7Z5Gn8MLidsELwtGM64wKUxKIqVZLnNpcll6Dm80oqgVmOaToXSkmOlmspUVhdpZnGpKhSUSZpn1zu1668e19j6MyyDgU28Vx062A05PH_kMooL_7IN7f2bbzNKCkUh0TxiPgeFd6F4LEyK18vrd8aDmbXv9n3b2L_Zte_gZhJ9pkQbbtA_7v4_9Ank2-H1g</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Kobayashi, Yuichi</creator><creator>Hosoe, Shigeyuki</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20110601</creationdate><title>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</title><author>Kobayashi, Yuichi ; Hosoe, Shigeyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Dynamical systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Flexibility</topic><topic>Learning</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Synchronous</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Yuichi</creatorcontrib><creatorcontrib>Hosoe, Shigeyuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Yuichi</au><au>Hosoe, Shigeyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>62</volume><issue>3-4</issue><spage>467</spage><epage>500</epage><pages>467-500</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-010-9465-0</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2011-06, Vol.62 (3-4), p.467-500
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_miscellaneous_907985036
source SpringerNature Journals
subjects Artificial Intelligence
Control
Dynamical systems
Electrical Engineering
Engineering
Flexibility
Learning
Mechanical Engineering
Mechatronics
Robotics
Robots
Synchronous
Tasks
title Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planning-Space%20Shift%20Motion%20Generation:%20Variable-space%20Motion%20Planning%20Toward%20Flexible%20Extension%20of%20Body%20Schema&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Kobayashi,%20Yuichi&rft.date=2011-06-01&rft.volume=62&rft.issue=3-4&rft.spage=467&rft.epage=500&rft.pages=467-500&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-010-9465-0&rft_dat=%3Cproquest_cross%3E907985036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864810281&rft_id=info:pmid/&rfr_iscdi=true