Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema
To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to gene...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2011-06, Vol.62 (3-4), p.467-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 3-4 |
container_start_page | 467 |
container_title | Journal of intelligent & robotic systems |
container_volume | 62 |
creator | Kobayashi, Yuichi Hosoe, Shigeyuki |
description | To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances. |
doi_str_mv | 10.1007/s10846-010-9465-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907985036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907985036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs7pB_AWvHiKvrRpmnjTsU1horDhNWTt66x0zUw63L69mVMEwVPe4fd_vPwJOedwxQHy68BBCcmAA9NCZgwOSI9necpAgD4kPdAJZ5BoeUxOQngDAK0y3SPuubFtW7cLNl3ZAun0ta46-ui62rV0jC16uxtv6Iv1tZ03yMKX-xY_aTpzH9aXdNTgpo6KDjcdtmFHXEXvXLml0-IVl_aUHFW2CXj2_fbJbDScDe7Z5Gn8MLidsELwtGM64wKUxKIqVZLnNpcll6Dm80oqgVmOaToXSkmOlmspUVhdpZnGpKhSUSZpn1zu1668e19j6MyyDgU28Vx062A05PH_kMooL_7IN7f2bbzNKCkUh0TxiPgeFd6F4LEyK18vrd8aDmbXv9n3b2L_Zte_gZhJ9pkQbbtA_7v4_9Ank2-H1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864810281</pqid></control><display><type>article</type><title>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</title><source>SpringerNature Journals</source><creator>Kobayashi, Yuichi ; Hosoe, Shigeyuki</creator><creatorcontrib>Kobayashi, Yuichi ; Hosoe, Shigeyuki</creatorcontrib><description>To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-010-9465-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Control ; Dynamical systems ; Electrical Engineering ; Engineering ; Flexibility ; Learning ; Mechanical Engineering ; Mechatronics ; Robotics ; Robots ; Synchronous ; Tasks</subject><ispartof>Journal of intelligent & robotic systems, 2011-06, Vol.62 (3-4), p.467-500</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</citedby><cites>FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-010-9465-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-010-9465-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kobayashi, Yuichi</creatorcontrib><creatorcontrib>Hosoe, Shigeyuki</creatorcontrib><title>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Dynamical systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Flexibility</subject><subject>Learning</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Synchronous</subject><subject>Tasks</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10EFLwzAUB_AgCs7pB_AWvHiKvrRpmnjTsU1horDhNWTt66x0zUw63L69mVMEwVPe4fd_vPwJOedwxQHy68BBCcmAA9NCZgwOSI9necpAgD4kPdAJZ5BoeUxOQngDAK0y3SPuubFtW7cLNl3ZAun0ta46-ui62rV0jC16uxtv6Iv1tZ03yMKX-xY_aTpzH9aXdNTgpo6KDjcdtmFHXEXvXLml0-IVl_aUHFW2CXj2_fbJbDScDe7Z5Gn8MLidsELwtGM64wKUxKIqVZLnNpcll6Dm80oqgVmOaToXSkmOlmspUVhdpZnGpKhSUSZpn1zu1668e19j6MyyDgU28Vx062A05PH_kMooL_7IN7f2bbzNKCkUh0TxiPgeFd6F4LEyK18vrd8aDmbXv9n3b2L_Zte_gZhJ9pkQbbtA_7v4_9Ank2-H1g</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Kobayashi, Yuichi</creator><creator>Hosoe, Shigeyuki</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20110601</creationdate><title>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</title><author>Kobayashi, Yuichi ; Hosoe, Shigeyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9514086ecfd8277a76d1608bbf684e57e33b48861ea1966e4a9f359e2cf34d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Dynamical systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Flexibility</topic><topic>Learning</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Synchronous</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Yuichi</creatorcontrib><creatorcontrib>Hosoe, Shigeyuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Yuichi</au><au>Hosoe, Shigeyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>62</volume><issue>3-4</issue><spage>467</spage><epage>500</epage><pages>467-500</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>To improve the flexibility of robotic learning, it is important to realize an ability to generate a hierarchical structure. This paper proposes a learning framework which can dynamically change the planning space depending on the structure of tasks. Synchronous motion information is utilized to generate ’modes’ and hierarchical structure of the controller is constructed based on the modes. This enables efficient planning and control in low-dimensional planning space, though the dimension of the total state space is in general very high. Three types of object manipulation tasks are tested as applications, where an object is found and used as a tool (or as a part of the body) to extend the ability of the robot. The proposed framework is expected to be a basic learning model to account for body schema acquisition including tool affordances.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-010-9465-0</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2011-06, Vol.62 (3-4), p.467-500 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_miscellaneous_907985036 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Control Dynamical systems Electrical Engineering Engineering Flexibility Learning Mechanical Engineering Mechatronics Robotics Robots Synchronous Tasks |
title | Planning-Space Shift Motion Generation: Variable-space Motion Planning Toward Flexible Extension of Body Schema |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planning-Space%20Shift%20Motion%20Generation:%20Variable-space%20Motion%20Planning%20Toward%20Flexible%20Extension%20of%20Body%20Schema&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Kobayashi,%20Yuichi&rft.date=2011-06-01&rft.volume=62&rft.issue=3-4&rft.spage=467&rft.epage=500&rft.pages=467-500&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-010-9465-0&rft_dat=%3Cproquest_cross%3E907985036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864810281&rft_id=info:pmid/&rfr_iscdi=true |