Strategies for complex data cube queries

This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2009-12, Vol.31 (3), p.332-346
Hauptverfasser: Zhang, Shichao, Wang, Rifeng, Jin, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 3
container_start_page 332
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 31
creator Zhang, Shichao
Wang, Rifeng
Jin, Zhi
description This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.
doi_str_mv 10.1007/s10489-008-0130-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907981650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907981650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-a1a65b9776570e7948c7eb3bae123ec50638068ab5e0921e543c28483af777463</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G5wo5voyT1ZSrEqFFyo4C5k4pnSMu3UZAb07U0ZQRBcncX5_gs_IecMrhmAuckMpHUUwFJgAig_IBOmjKBGOnNIJuC4pFq7t2NykvMaAIQANiFXz30KPS5XmKumS1XsNrsWP6v30IcqDjVWHwOm8j0lR01oM5793Cl5nd-9zB7o4un-cXa7oJE719PAgla1M0YrA2ictNFgLeqAjAuMCrSwoG2oFZZKDJUUkVtpRWiMMVKLKbkcfXepK9G595tVjti2YYvdkL0D4yzTCgp58Ydcd0PalnLelmABClyB2AjF1OWcsPG7tNqE9OUZ-P1yflzOl-X8fjnPi4aPmlzY7RLTr_H_om_dm238</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879430509</pqid></control><display><type>article</type><title>Strategies for complex data cube queries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Shichao ; Wang, Rifeng ; Jin, Zhi</creator><creatorcontrib>Zhang, Shichao ; Wang, Rifeng ; Jin, Zhi</creatorcontrib><description>This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-008-0130-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aggregates ; Algorithms ; Artificial Intelligence ; Computation ; Computer Science ; Cubes ; Data mining ; Efficiency ; Icebergs ; Intelligence ; Machines ; Manufacturing ; Mechanical Engineering ; Processes ; Queries ; Strategy ; Studies</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2009-12, Vol.31 (3), p.332-346</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-a1a65b9776570e7948c7eb3bae123ec50638068ab5e0921e543c28483af777463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-008-0130-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-008-0130-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Wang, Rifeng</creatorcontrib><creatorcontrib>Jin, Zhi</creatorcontrib><title>Strategies for complex data cube queries</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Cubes</subject><subject>Data mining</subject><subject>Efficiency</subject><subject>Icebergs</subject><subject>Intelligence</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Queries</subject><subject>Strategy</subject><subject>Studies</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G5wo5voyT1ZSrEqFFyo4C5k4pnSMu3UZAb07U0ZQRBcncX5_gs_IecMrhmAuckMpHUUwFJgAig_IBOmjKBGOnNIJuC4pFq7t2NykvMaAIQANiFXz30KPS5XmKumS1XsNrsWP6v30IcqDjVWHwOm8j0lR01oM5793Cl5nd-9zB7o4un-cXa7oJE719PAgla1M0YrA2ictNFgLeqAjAuMCrSwoG2oFZZKDJUUkVtpRWiMMVKLKbkcfXepK9G595tVjti2YYvdkL0D4yzTCgp58Ydcd0PalnLelmABClyB2AjF1OWcsPG7tNqE9OUZ-P1yflzOl-X8fjnPi4aPmlzY7RLTr_H_om_dm238</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Zhang, Shichao</creator><creator>Wang, Rifeng</creator><creator>Jin, Zhi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091201</creationdate><title>Strategies for complex data cube queries</title><author>Zhang, Shichao ; Wang, Rifeng ; Jin, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-a1a65b9776570e7948c7eb3bae123ec50638068ab5e0921e543c28483af777463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Cubes</topic><topic>Data mining</topic><topic>Efficiency</topic><topic>Icebergs</topic><topic>Intelligence</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Queries</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Wang, Rifeng</creatorcontrib><creatorcontrib>Jin, Zhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shichao</au><au>Wang, Rifeng</au><au>Jin, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for complex data cube queries</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>31</volume><issue>3</issue><spage>332</spage><epage>346</epage><pages>332-346</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10489-008-0130-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2009-12, Vol.31 (3), p.332-346
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_miscellaneous_907981650
source SpringerLink Journals - AutoHoldings
subjects Aggregates
Algorithms
Artificial Intelligence
Computation
Computer Science
Cubes
Data mining
Efficiency
Icebergs
Intelligence
Machines
Manufacturing
Mechanical Engineering
Processes
Queries
Strategy
Studies
title Strategies for complex data cube queries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20complex%20data%20cube%20queries&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Zhang,%20Shichao&rft.date=2009-12-01&rft.volume=31&rft.issue=3&rft.spage=332&rft.epage=346&rft.pages=332-346&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-008-0130-2&rft_dat=%3Cproquest_cross%3E907981650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879430509&rft_id=info:pmid/&rfr_iscdi=true