Strategies for complex data cube queries
This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cu...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2009-12, Vol.31 (3), p.332-346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 3 |
container_start_page | 332 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 31 |
creator | Zhang, Shichao Wang, Rifeng Jin, Zhi |
description | This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods. |
doi_str_mv | 10.1007/s10489-008-0130-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907981650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907981650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-a1a65b9776570e7948c7eb3bae123ec50638068ab5e0921e543c28483af777463</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G5wo5voyT1ZSrEqFFyo4C5k4pnSMu3UZAb07U0ZQRBcncX5_gs_IecMrhmAuckMpHUUwFJgAig_IBOmjKBGOnNIJuC4pFq7t2NykvMaAIQANiFXz30KPS5XmKumS1XsNrsWP6v30IcqDjVWHwOm8j0lR01oM5793Cl5nd-9zB7o4un-cXa7oJE719PAgla1M0YrA2ictNFgLeqAjAuMCrSwoG2oFZZKDJUUkVtpRWiMMVKLKbkcfXepK9G595tVjti2YYvdkL0D4yzTCgp58Ydcd0PalnLelmABClyB2AjF1OWcsPG7tNqE9OUZ-P1yflzOl-X8fjnPi4aPmlzY7RLTr_H_om_dm238</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879430509</pqid></control><display><type>article</type><title>Strategies for complex data cube queries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Shichao ; Wang, Rifeng ; Jin, Zhi</creator><creatorcontrib>Zhang, Shichao ; Wang, Rifeng ; Jin, Zhi</creatorcontrib><description>This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-008-0130-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aggregates ; Algorithms ; Artificial Intelligence ; Computation ; Computer Science ; Cubes ; Data mining ; Efficiency ; Icebergs ; Intelligence ; Machines ; Manufacturing ; Mechanical Engineering ; Processes ; Queries ; Strategy ; Studies</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2009-12, Vol.31 (3), p.332-346</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-a1a65b9776570e7948c7eb3bae123ec50638068ab5e0921e543c28483af777463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-008-0130-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-008-0130-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Wang, Rifeng</creatorcontrib><creatorcontrib>Jin, Zhi</creatorcontrib><title>Strategies for complex data cube queries</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Cubes</subject><subject>Data mining</subject><subject>Efficiency</subject><subject>Icebergs</subject><subject>Intelligence</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Queries</subject><subject>Strategy</subject><subject>Studies</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G5wo5voyT1ZSrEqFFyo4C5k4pnSMu3UZAb07U0ZQRBcncX5_gs_IecMrhmAuckMpHUUwFJgAig_IBOmjKBGOnNIJuC4pFq7t2NykvMaAIQANiFXz30KPS5XmKumS1XsNrsWP6v30IcqDjVWHwOm8j0lR01oM5793Cl5nd-9zB7o4un-cXa7oJE719PAgla1M0YrA2ictNFgLeqAjAuMCrSwoG2oFZZKDJUUkVtpRWiMMVKLKbkcfXepK9G595tVjti2YYvdkL0D4yzTCgp58Ydcd0PalnLelmABClyB2AjF1OWcsPG7tNqE9OUZ-P1yflzOl-X8fjnPi4aPmlzY7RLTr_H_om_dm238</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Zhang, Shichao</creator><creator>Wang, Rifeng</creator><creator>Jin, Zhi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091201</creationdate><title>Strategies for complex data cube queries</title><author>Zhang, Shichao ; Wang, Rifeng ; Jin, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-a1a65b9776570e7948c7eb3bae123ec50638068ab5e0921e543c28483af777463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Cubes</topic><topic>Data mining</topic><topic>Efficiency</topic><topic>Icebergs</topic><topic>Intelligence</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Queries</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Wang, Rifeng</creatorcontrib><creatorcontrib>Jin, Zhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shichao</au><au>Wang, Rifeng</au><au>Jin, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for complex data cube queries</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>31</volume><issue>3</issue><spage>332</spage><epage>346</epage><pages>332-346</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>This paper proposes a computation method for holistic multi-feature cube (MF-Cube) queries based on the characteristics of MF-Cubes. Three simple yet efficient strategies are designed to optimize the dependent complex aggregate at multiple granularities for a complex data-mining query within data cubes. One strategy is the computation of Holistic MF-Cube queries using the PDAP (Part Distributive Aggregate Property). More efficiency is gained by another strategy, that of dynamic subset data selection (the iceberg query technique), which reduces the size of the materialized data cubes. To extend this efficiency further, the second approach may adopt the chunk-based caching technique that reuses the output of previous queries. By combining these three strategies, we design an algorithm called the PDIC (Part Distributive Iceberg Chunk). We experimentally evaluate this algorithm using synthetic and real-world datasets and demonstrate that our approach delivers up to approximately twice the performance efficiency of traditional computation methods.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10489-008-0130-2</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2009-12, Vol.31 (3), p.332-346 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_miscellaneous_907981650 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aggregates Algorithms Artificial Intelligence Computation Computer Science Cubes Data mining Efficiency Icebergs Intelligence Machines Manufacturing Mechanical Engineering Processes Queries Strategy Studies |
title | Strategies for complex data cube queries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20complex%20data%20cube%20queries&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Zhang,%20Shichao&rft.date=2009-12-01&rft.volume=31&rft.issue=3&rft.spage=332&rft.epage=346&rft.pages=332-346&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-008-0130-2&rft_dat=%3Cproquest_cross%3E907981650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879430509&rft_id=info:pmid/&rfr_iscdi=true |